Регенерация клеток это


Регенерация — Википедия

Ренегера́ция (восстановление) — способность живых организмов со временем восстанавливать повреждённые ткани, а иногда и целые потерянные органы. Регенерацией также называется восстановление целого организма из его искусственно отделённого фрагмента (например, восстановление гидры из небольшого фрагмента тела или диссоциированных клеток). У протистов регенерация может проявляться в восстановлении утраченных органоидов или частей клетки.

Регенерация, происходящая в случае повреждения или утраты какого-нибудь органа или части организма, называется репаративной. Регенерацию в процессе нормальной жизнедеятельности организма, обычно не связанную с повреждением или утратой части организма, называют физиологической.

В каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи. Птицы периодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такие процессы носят название физиологической регенерации.

Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию.

При типичной регенерации утраченная часть замещается путём развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (автотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.

При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна (гетероморфоз).

Способность к регенерации широко распространена среди животных. Низшие животные, как правило, чаще способны к регенерации, чем более сложные высокоорганизованные формы. Так, среди беспозвоночных гораздо больше видов, способных восстанавливать утраченные органы, чем среди позвоночных, но только у некоторых из них возможна регенерация целой особи из небольшого её фрагмента. Тем не менее общее правило о снижении способности к регенерации с повышением сложности организма нельзя считать абсолютным. Такие примитивные животные, как круглые черви и коловратки, практически не способны к регенерации, а у гораздо более сложных ракообразных и амфибий эта способность хорошо выражена; известны и другие исключения. Некоторые сравнительно близкородственные животные сильно различаются в этом отношении. Так, у многих видов дождевых червей только из передней половины тела может полностью регенерировать новая особь, тогда как пиявки не способны восстановить даже отдельные утраченные органы. У хвостатых амфибий на месте ампутированной конечности образуется новая, а у лягушки культя просто заживает и никакого нового роста не происходит. Однако, как показали опыты Полежаева, если культю лягушки подвергать механическим раздражениям или воздействию определённых химических веществ, то конечность регенерирует. Более того, при таких условиях регенерируют и конечности некоторых млекопитающих, например, новорожденных крысят[1].

Нет также чёткой связи между характером эмбрионального развития и способностью к регенерации. Так, у некоторых животных со строго детерминированным развитием (гребневики, полихеты) во взрослом состоянии регенерация развита хорошо (у ползающих гребневиков и некоторых полихет целая особь может восстановиться из небольшого участка тела), а у некоторых животных с регулятивным развитием (морские ежи, млекопитающие) — достаточно слабо.

Многие беспозвоночные способны к регенерации значительной части тела. У большинства видов губок, гидроидных полипов, многих видов плоских, ленточных и кольчатых червей, мшанок, иглокожих и оболочников из небольшого фрагмента тела может регенерировать целый организм. Особенно примечательна способность к регенерации у губок. Если тело взрослой губки продавить через сетчатую ткань, то все клетки отделятся друг от друга, как просеянные сквозь сито. Если затем поместить все эти отдельные клетки в воду и осторожно, тщательно перемешать, полностью разрушив все связи между ними, то спустя некоторое время они начинают постепенно сближаться и воссоединяются, образуя целую губку, сходную с прежней. В этом участвует своего рода «узнавание» на клеточном уровне, о чём свидетельствует следующий эксперимент: губки трёх разных видов разделяли описанным способом на отдельные клетки и как следует перемешивали. При этом обнаружилось, что клетки каждого вида способны «узнавать» в общей массе клетки своего вида и воссоединяются только с ними, так что в результате образовалась не одна, а три новых губки, подобные трём исходным. Из других животных к восстановлению целого организма из взвеси клеток способна только гидра.[2]

По этиологии и механизму развития различают физиологическую, репаративную регенерации, регенерационную гипертрофию и патологическую регенерацию. Физиологическая регенерация-это восстановление элементов клеток и тканей в результате их естественного отмирания. Репаративная регенерация-это восстановление структурных элементов клеток и тканей в результате их патологической гибели. Регенерационная гипертрофия-это возмещение исходной массы организма взамен погибшей за счёт увеличения сохранившейся его части или других органов без восстановления формы органа. Патологическая регенерация-это нарушение или извращение нормального течения регенерационного процесса.[3]

У человека хорошо регенерирует эпидермис; к регенерации способны также такие его производные, как волосы и ногти. Способностью к регенерации обладает также костная ткань: кости срастаются после переломов. С утратой части печени (до 85 %) оставшиеся фрагменты начинают увеличиваться в размере благодаря увеличению размера самих клеток, но не благодаря увеличению их количества; таким образом печень полностью восстанавливает первоначальную массу.

При определённых условиях могут ограничено регенерировать кончики пальцев[4] — при утере фрагмента пальца до первой фаланги, если рана не была купирована.

До недавних пор считалось, что нервная система не способна к регенерации, но последние исследования показали, что ЦНС обладает некоторым нейрогенезом — способностью создавать новые нейроны и впоследствии образовывать новые синаптические соединения[5].

  1. Долматов И. Ю., Машанов В. С. Регенерация у голотурий. — Владивосток: Дальнаука, 2007. — 208 с.
  2. Tanaka EM. Cell differentiation and cell fate during urodele tail and limb regeneration. Curr Opin Genet Dev. 2003 Oct;13(5):497-501. PMID 14550415
  3. Nye HL, Cameron JA, Chernoff EA, Stocum DL. Regeneration of the urodele limb: a review. Dev Dyn. 2003 Feb;226(2):280-94. PMID 12557206
  4. Gardiner DM, Blumberg B, Komine Y, Bryant SV. Regulation of HoxA expression in developing and regenerating axolotl limbs. Development. 1995 Jun;121(6):1731-41. PMID 7600989
  5. Putta S, Smith JJ, Walker JA, Rondet M, Weisrock DW, Monaghan J, Samuels AK, Kump K, King DC, Maness NJ, Habermann B, Tanaka E, Bryant SV, Gardiner DM, Parichy DM, Voss SR, From biomedicine to natural history research: EST resources for ambystomatid salamanders. BMC Genomics. 2004 Aug 13;5(1):54. PMID 15310388
  6. Andrews, Wyatt. Medicine's Cutting Edge: Re-Growing Organs, Sunday Morning, CBS News (March 23, 2008).

ru.wikipedia.org

Что такое РЕГЕНЕРАЦИЯ КЛЕТОК - простой ответ что это значит

Регенерация клеток – это акт обновления, роста или восстановления клеток, участвующих в заживлении ран, восстановлении тканей и подобных биологических функциях. Данная биологическая особенность присуща всем живым организмам, от бактерий до растений и от земноводных до млекопитающих.

 

У людей, к сожалению, клеточная регенерация имеет ограниченные возможности по сравнению с некоторыми представителями жизни на нашей планете. К примеру, представителями экстремальной регенерации могут выступить:

  • Морские звезды и ящерицы способны вырастить сломанные или оторванные конечности.
  • Плоские черви могут полностью клонировать всю структуру своего тела с целью размножения.

 

Регенерация клеток  как процесс размножения.

 

Хотя все организмы, включая бактерии, грибы и дрожжи, обладают биологической способностью к регенерации клеток, этот процесс по-разному проявляется в каждом отдельном организме. Поддержание биологической целостности организма является основной целью клеточной регенерации. Некоторые организмы также используют регенерацию клеток как форму бесполого размножения. Например, дрожжи размножаются посредством бесполого процесса регенерации клеток, известного как почкование. Новая ячейка растет как отдельный кусок, прикрепленный к старой ячейке. Она собирает информацию о ДНК для воспроизведения точной копии клетки. После достижения зрелости, новая клетка отделяется и становится независимой от клетки-хозяина, что позволяет дрожжам и подобным грибам размножаться и расти.

 

Комплексная регенерация.

 

Некоторые рептилии и амфибии обладают способностью к комплексной клеточной регенерации.  Данная особенность позволяет тканевым структурам восстанавливаться после повреждения посредством процесса, известного как автотомия.

Когда происходит травма или такие существа находятся в опасности, взрослые клетки в хвостах, плавниках и других придатках могут отделиться от основного тела, оставив придаток позади. Как часть естественного биохимического процесса, клетки на краях таких повреждений морфируются обратно в стволовые клетки. Это позволяет процессу регенерации клеток, отрастить новый придаток взамен утраченного.

 

 

Регенерация клеток у человека.

 

У человека регенерация клеток представляет собой несколько иной процесс. Стволовые клетки, как строительные блоки, позволяют эмбриону образовывать органы, ткани и придатки, только в процессе формирования. Как только клетки развиваются, они не могут снова вернуться к стволовым клеткам, как это наблюдается у некоторых рептилий и амфибий.

 

Ежедневно в человеческом теле умирают миллиарды клеток вследствие некроза или апоптоза.

Апоптоз — это форма запрограммированной клеточной смерти, которая позволяет клеткам фрагментироваться или иначе умирать как часть нормального биохимического процесса, связанного с развитием, ростом и старением. Без какой-либо формы регенерации клеток, некроз и апоптоз, в конечном итоге приведут к разрушению целых органов и тканей. Но благодаря клеточной регенерации, наше тело выращивает новые клетки, чтобы заменить мертвые.

 

 

Следует понимать, что человеческая регенерация не столь экстремальна, и далеко не все органы могут быть восстановлены. Клетки головного мозга, восстанавливаются с течением времени, но человек не может вырастить себе новый мозг. Альтернативно, человеческое тело может регенерировать печень, если осталась четверть неповрежденного органа. Аналогично и с кожным покровом. Основным условием остается достаточное количество здоровой кожи необходимой для репликации новых клеток.

Получи плюсик к карме - поделись добром с друзьми:

VK

Facebook

Twitter

chto-takoe.net

Регенерация — Медицинская энциклопедия

I

Регенерация (лат. regeneratio возрождение, возобновление)

обновление в процессе жизнедеятельности структур организма (физиологическая регенерация) и восстановление тех из них, которые были утрачены в результате патологических процессов (репаративная регенерация). Физиологическая Р. включает непрерывное обновление структур. Репаративная Р. развертывается на базе физиологической (т.е. в ее основе лежат те же механизмы) и отличается лишь большей интенсивностью проявлений. Поэтому репаративную Р. следует рассматривать как нормальную реакцию организма на повреждение, характеризующуюся усилением физиологических механизмов воспроизведения специфических тканевых элементов того или иного органа.

Значение Р. для организма определяется тем, что на основе клеточного и внутриклеточного обновления органов обеспечивается широкий диапазон приспособительных колебаний и функциональной активности в меняющихся условиях среды, а также восстановление и компенсация функций, нарушенных в результате действия различных патогенных факте. Физиологическая и репаративная Р. является структурной основой всего разнообразия проявлений жизнедеятельности организма в норме и патологии.

Процесс Р. развертывается на системном, органном, тканевом, клеточном, внутриклеточном уровнях. Осуществляется путем прямого и непрямого деления клеток, внутриклеточных органелл и их размножения. Универсальными формами Р. являются обновление внутриклеточных структур и их гиперплазия. При этом возможна собственно внутриклеточная Р., когда после гибели части клетки ее строение восстанавливается за счет размножения сохранившихся органелл, либо увеличение числа органелл в одной клетке при гибели другой (компенсаторная гиперплазия органелл).

Восстановление исходной массы органа после его повреждения осуществляется различными путями. В одних случаях сохранившаяся часть органа не изменяется или изменяется мало, а недостающая его часть отрастает от раневой поверхности в виде четко отграниченного регенерата. Такой способ восстановления утраченной части органа называют эпиморфозом. В других случаях происходит перестройка оставшейся части органа, в процессе которой он постепенно приобретает исходные очертания и размеры. Этот вариант регенераторного процесса называют морфаллаксисом.

Принято считать, что репаративная Р. представляет собой заключительную фазу различных патологических процессов, развертывающуюся после дистрофических, некротических и воспалительных изменений. Однако современные исследования свидетельствуют о том, что немедленно после начала действия патогенного фактора резко интенсифицируется физиологическая Р., направленная на компенсацию внезапно возникшего ускоренного расходования структур или их гибели; в это время она представляет собой по существу уже репаративную регенерацию.

Существуют две точки зрения на источники Р. Согласно одной из них, пролиферируют так называемые камбиальные, незрелые клеточные элементы, которые, интенсивно размножаясь и быстро дифференцируясь, восполняют убыль высокодифференцированных клеток данного органа, обеспечивающих его специфическую функцию (теория резервных клеток). Другая точка зрения допускает, что источником Р. могут быть высокодифференцированные клетки органа, которые в условиях патологического процесса перестраиваются, утрачивают часть своих специфических органелл и одновременно приобретают способность к митотическому делению с последующей пролиферацией и дифференцировкой.

В одних случаях Р. заканчивается формированием части, идентичной погибшей по форме и построенной из такой же ткани (полная регенерация, реституция, гомоморфоз). В других случаях в результате Р. вместо утраченного может образоваться иной орган, например у ракообразных вместо усика формируется конечность (гетероморфоз). Наблюдают также неполное развитие регенерирующего органа — гипотипию, например меньшее число пальцев на конечности у тритона. Случается и обратное — формирование большего по сравнению с нормой, например, числа конечностей, обильное новообразование костной ткани в месте перелома (избыточная регенерация, или суперрегенерация). Иногда в зоне повреждения образуется не специфическая для данного органа, а соединительная ткань, которая в дальнейшем подвергается рубцеванию (неполная регенерация, или субституция). По разным причинам течение репаративной Р. может принимать затяжной характер, качественно извращаться, сопровождаться образованием вяло гранулирующих длительно незаживающих язв, формированием ложного сустава и т.д. В подобных случаях говорят о патологической регенерации.

Регенерационная способность у высших животных, в частности у человека, характеризуется разнообразными проявлениями. Так, в некоторых органах и тканях, например в костном мозге, покровном эпителии, слизистых оболочках, костях, физиологическая Р. выражается в непрерывном обновлении клеточного состава, а репаративная — в полном восстановлении дефекта ткани и реконструкции ее исходной формы путем интенсивного митотического деления клеток. В других органах, например в печени, почках, поджелудочной железе, легких, обновление клеточного состава происходит сравнительно медленно, а ликвидация повреждения и нормализация нарушенных функций обеспечиваются в них на основе размножения клеток и наращивания массы органелл в предсуществующих сохранившихся клетках. В результате масса последних увеличивается, они подвергаются гипертрофии, соответственно этому возрастает их функциональная активность. Характерно, что в этих органах их исходная форма чаще всего не восстанавливается, в месте повреждения образуется рубец, а восполнение утраченной части происходит за счет неповрежденных органов, т.е. восстановительный процесс протекает по типу регенерационной гипертрофии. В ц.н.с. и миокарде, где способность к митотическому делению клеток отсутствует, структурное и функциональное восстановление после повреждения достигается исключительно или почти исключительно за счет увеличения массы органелл в сохранившихся клетках и гипертрофии последних, т.е. восстановительная способность выражается только в форме внутриклеточной регенерации.

Эффективность процесса Р. во многом определяется условиями, в которых он протекает. Важное значение имеет общее состояние организма. Так, истощение, авитаминозы, нарушения иннервации затормаживают репаративную Р. и способствуют ее переходу в патологическую. Скорость репаративной Р. в известной мере определяется и возрастом. Однако сколько-нибудь заметных отклонений от типичного течения процесса Р. при этом не отмечается. Большее значение имеют тяжесть самой болезни и ее осложнения, чем возрастное ослабление регенерационной способности. Изменение условий, в которых протекает процесс Р., может приводить как к количественным, так и качественным его изменениям, например, обычно не происходит регенерации костей свода черепа от краев дефекта. Однако, если этот дефект заполнить костными опилками, он закрывается полноценной костной тканью.

В регуляции процессов Р. участвуют многочисленные факторы эндо- и экзогенной природы. Наиболее изучено влияние на Р. гормонов. Регуляция митотической активности клеток различных органов осуществляется гормонами коры надпочечников, щитовидной железы, половых желез и др. Важную роль в этом отношении играют Гастроинтестинальные гормоны. Известны мощные эндогенные регуляторы митотической активности — кейлоны, Простагландины, их антагонисты и другие биологически активные вещества. Важное место в исследованиях механизмов регуляции Р. занимает изучение роли различных отделов нервной системы в их течении и исходах. Новым направлением в разработке этой проблемы является изучение иммунологической регуляции процессов Р., в частности установление факта переноса лимфоцитами «регенерационной информации», стимулирующей пролиферативную активность клеток различных внутренних органов.

Знание механизмов регуляции регенерационной способности органов и тканей открывает перспективы создания научных основ стимуляции репаративной Р. и управления процессами выздоровления.

См. также Компенсаторные процессы.

Библиогр.: Новое в учении о регенерации, под ред. Л.Д. Лиознера, М., 1977, библиогр.; Саркисов Д.С. Очерки истории общей патологии, М., 1988; Структурные основы адаптации и компенсации нарушенных функций, под ред. Д.С. Саркисова, М., 1987, библиогр.

II

Регенерация (лат. regeneratio возрождение, восстановление; Ре- + genero, generatum порождать, производить)

в биологии — восстановление организмом утраченных или поврежденных частей.

Регенерация внутриклеточная (син. Саркисова внутриклеточная регенерация) — Р. поврежденных органоидов и мембранных структур клетки; характерна для клеток миокарда, нервной системы.

Регенерация клеточная — Р. органов или тканей путем размножения неповрежденных клеток; характерна для покровного эпителия, соединительной ткани.

Регенерация неполная (син. субституция) — P., при которой погибшие участки замещаются тканью иного вида (обычно грануляционной, а затем рубцом).

Регенерация патологическая

1) см. Регенерация репаративная,

2) P., характеризующаяся замедленным течением процессов заживления или избыточным развитием замещающей ткани.

Регенерация полная (син. реституция) — P., при которой погибшие участки замещаются тканью того же вида и той же структуры.

Регенерация репаративная (син.: Р. патологическая, репарация) — Р. участков органов или тканей, погибших в результате какого-либо патологического процесса.

Регенерация физиологическая — Р. тканей, отмирающих в процессе нормальной жизнедеятельности организма, например Р. эпидермиса.

Источник: Медицинская энциклопедия на Gufo.me


Значения в других словарях

  1. регенерация — РЕГЕНЕРАЦИЯ — восстановление организмом утраченных частей тела (свойство, лежащее в основе вегетативного размножения). Ботаника. Словарь терминов
  2. регенерация — регенерация , -и Орфографический словарь. Одно Н или два?
  3. регенерация — РЕГЕНЕРАЦИЯ -и; ж. [от лат. regeneratio — восстановление, возрождение, возвращение] 1. Техн. Превращение отработанных продуктов в исходные продукты для их повторного использования. Р. отработанных масел. Р. олова. 2. Биол. Толковый словарь Кузнецова
  4. регенерация — Регенерации, мн. нет, ж. [латин. regeneratio – восстановление, возвращение]. 1. Нагрев газа и воздуха, поступающих в печь, отработанными продуктами горения (тех.). 2. Воспроизведение животными утерянных органов (зоол.). 3. Излучение приемником самостоятельных радиоволн (радио). Большой словарь иностранных слов
  5. РЕГЕНЕРАЦИЯ — РЕГЕНЕРАЦИЯ, в биологии — способность организма к замещению одной из утраченных частей. Термин регенерация также относится к форме БЕСПОЛОГО РАЗМНОЖЕНИЯ, при котором новая особь возникает из отделенной части материнского организма. Научно-технический словарь
  6. регенерация — Регенерация, регенерации, регенерации, регенераций, регенерации, регенерациям, регенерацию, регенерации, регенерацией, регенерациею, регенерациями, регенерации, регенерациях Грамматический словарь Зализняка
  7. РЕГЕНЕРАЦИЯ — РЕГЕНЕРАЦИЯ (от лат. regeneratio — возобновление) — англ. regeneration; нем. Regeneration. Обновление, возрождение, восстановление. Социологический словарь
  8. Регенерация — См. Генераторный газ. Энциклопедический словарь Брокгауза и Ефрона
  9. регенерация — Восстановление организмом утраченных или повреждённых органов и тканей, а также восстановление организма из его части. Свойственна всем живым организмам – животным, человеку, растениям. У разных групп животных выражается по-разному. Напр. Биология. Современная энциклопедия
  10. регенерация — регенерация I ж. 1. Обновление структур организма в процессе жизнедеятельности и восстановление тех структур, которые были утрачены в результате патологических процессов. Толковый словарь Ефремовой
  11. РЕГЕНЕРАЦИЯ — РЕГЕНЕРАЦИЯ — в технике,1) возвращение отработавшему продукту исходных качеств, напр. восстановление свойств отработавшей формовочной смеси в литейном производстве, очистка отработавшего смазочного масла... Большой энциклопедический словарь
  12. регенерация — РЕГЕНЕР’АЦИЯ, регенерации, мн. нет, ·жен. (·лат. regeneratio — восстановление, возвращение). 1. Нагрев газа и воздуха, поступающих в печь, отработанными продуктами горения (тех.). 2. Воспроизведение животными утерянных органов (зоол.). 3. Излучение приемником самостоятельных радио-волн (·радио ). Толковый словарь Ушакова
  13. регенерация — сущ., кол-во синонимов: 11 возмещение 20 возобновление 16 возрождение 23 восстановление 50 гетероморфоз 1 морфаллаксис 1 петтенкоферирование 2 регенерирование 3 суперрегенерация 1 фоторегенерация 1 электрорегенерация 1 Словарь синонимов русского языка
  14. Регенерация — (от позднелат. regeneratio — возрождение, возобновление) в биологии, восстановление организмом утраченных или поврежденных органов и тканей, а также восстановление целого организма из его части. Большая советская энциклопедия
  15. регенерация — орф. регенерация, -и Орфографический словарь Лопатина
  16. регенерация — (от позднелат. regenerate возрождение, возобновление), восстановление организмом утраченных или повреждённых органов и тканей (собственно Р.), а также восстановление целого организма из его части (соматический эмбриогенез, вегетативное размножение). Биологический энциклопедический словарь
  17. регенерация — -и, ж. 1. тех. Превращение путем определенных операций отработанных продуктов в исходные продукты для повторного их использования. Регенерация отработанных масел. Регенерация олова. 2. тех. Малый академический словарь
  18. регенерация — Регенер/а́ци/я [й/а]. Морфемно-орфографический словарь
  19. регенерация — РЕГЕНЕРАЦИЯ (от позднелат. regeneratio — возрождение, восстановление), восстановление утраченных частей организма путём размножения или гиперплазии сохранившихся тканевых элементов. Р. — неотъемлемое свойство всех живых существ. Быстрота и совершенство... Ветеринарный энциклопедический словарь
  20. регенерация — РЕГЕНЕРАЦИЯ, и, ж. (спец.). Восстановление, возобновление, возмещение чего-н. в процессе развития, деятельности, обработки. Внутриклеточная р. Р. материалов. Р. воздуха. | прил. регенерационный, ая, ое и регенеративный, ая, ое. Толковый словарь Ожегова

gufo.me

Регенерация клеток организма

Пока мы живем, в нашем организме, незаметно для нас самих, протекают важнейшие процессы. Деление, самообновление и замена состарившихся клеток новыми – один из самых важных. Благодаря регенерации клеток организма мы растем, взрослеем, заживляем раны, и просто живем. Стоит замедлиться процессам регенерации, как неизменно наступает старость, а при полном их прекращении нас ждет быстрая смерть.

Типы регенерации

Наш организм может запускать два вида регенерации: на каждый день и на экстренный случай. Ежедневная регенерация является физиологической и никогда не останавливается. Так, мы обновляем клетки кожи, слизистых оболочек, крови, костного мозга и даже роговицы. Примером такой регенерации является постоянный рост ногтей и волос, он никогда не останавливается, пока человек жив. Но обновления в нашем теле идут с разной скоростью. Они могут занимать всего пару суток — от старой ткани до полностью новой, в кишечнике, или до месяца – для полного обновления кожи.  В тканях печени и почек процесс регенерации идет куда медленнее, а деления клеток нервных тканей вообще не существует. Потому и говорят, что нервные клетки не восстанавливаются.

Репаративная регенерация – тот самый спасательный круг на экстренный случай. Таким образом, тело восстанавливается после ранений. Процесс проходит одинаково — для небольшой ранки на пальце и для повреждений кожи после серьезной операции. При помощи такого же процесса у ящерицы отрастает новый хвост.

Запуск регенерации

Физиологическая регенерация имеет две фазы, это образование новых клеток и разрушение старых. Причем разрушение идет первым, и порой осуществляется активнее, чем восстановление. Ученые давно выяснили, что именно процессы распада клеток стимулируют организм производить другие клетки им на замену. Особую роль, в запуске процессов восстановления клеток и производства новых, имеют гормоны и пептиды. Они обеспечивают передачу информации от одной клетки и системы к другой, так клетки — восстановители узнают, какое количество и каких клеток нужно произвести. Со временем количество пептидов сокращается, и они не всегда способны передать нужные данные, так что процесс регенерации идет куда медленнее.

Что влияет на регенерацию?

Чтобы регенерация осуществлялась, недостаточно одних пептидов. Клетки не могут строиться, если отсутствует строительный материал. Поэтому обязательно должны поступать питательные вещества из воды, воздуха и, конечно, пищи. Самым важным строительным материалом является аминокислота, которая вырабатывает пептид и белок, потому пища должна содержать достаточное количество белков и пептидов для нормализации процесса восстановления клеток. Липиды, кислоты, мононуклеины, микроэлементы, полисахариды – вот неполный список необходимых веществ для восстановления сложнейших систем человеческого организма.

Регенерация также может замедляться. Приостанавливает регенерацию, как мы уже упоминали, недостаточное количество пептидов, но, кроме них, влияние оказывает неправильное питание, загрязненная окружающая среда, нарушение циркуляции крови и стресс. На репаративную регенерацию серьезное воздействие оказывает воспалительный процесс в тканях.

Чтобы поддерживать на нужном уровне регенерацию клеток, ученые рекомендуют применять пептиды, иммуномодуляторы, а также витамины и минеральные комплексы, нейтрализующие воздействие неправильного питания. С рекомендуемыми многими врачами, гормональными и стероидными комплексами, мы бы советовали быть осторожнее – воздействие гормонов не до конца изучено, поэтому  даже медики не могут в полной мере отвечать за возможные негативные последствия. Пептидные комплексы, для стимуляции регенерации в сочетании с полноценным отдыхом и правильным питанием, способны дать наилучший результат.

avivie.ru

Регенерация - это... Что такое Регенерация?

Регенера́ция (восстановление) — способность живых организмов со временем восстанавливать повреждённые ткани, а иногда и целые потерянные органы. Регенерацией также называется восстановление целого организма из его искусственно отделённого фрагмента (например, восстановление гидры из небольшого фрагмента тела или диссоциированных клеток). У протистов регенерация может проявляться в восстановлении утраченных органоидов или частей клетки.

Регенерацией называется восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Регенерация, происходящая в случае повреждения или утраты какого-нибудь органа или части организма, называется репаративной. Регенерацию в процессе нормальной жизнедеятельности организма, обычно не связанную с повреждениями или утратой, называют физиологической.

Физиологическая регенерация

В каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи. Птицы периодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такие процессы носят название физиологической регенерации.

Репаративная регенерация

Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию.

При типичной регенерации утраченная часть замещается путём развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (автотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.

При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.

Регенерация у животных

Хамелеон

Способность к регенерации широко распространена среди животных. Низшие животные, как правило, чаще способны к регенерации, чем более сложные высокоорганизованные формы. Так, среди беспозвоночных гораздо больше видов, способных восстанавливать утраченные органы, чем среди позвоночных, но только у некоторых из них возможна регенерация целой особи из небольшого её фрагмента. Тем не менее общее правило о снижении способности к регенерации с повышением сложности организма нельзя считать абсолютным. Такие примитивные животные, как круглые черви и коловратки, практически не способны к регенерации, а у гораздо более сложных ракообразных и амфибий эта способность хорошо выражена; известны и другие исключения. Некоторые сравнительно близкородственные животные сильно различаются в этом отношении. Так, у многих видов дождевых червей только из передней половины тела может полностью регенерировать новая особь, тогда как пиявки не способны восстановить даже отдельные утраченные органы. У хвостатых амфибий на месте ампутированной конечности образуется новая, а у лягушки культя просто заживает и никакого нового роста не происходит. Нет также чёткой связи между характером эмбрионального развития и способностью к регенерации. Так, у некоторых животных со строго детерминированным развитием (гребневики, полихеты) во взрослом состоянии регенерация развита хорошо (у ползающих гребневиков и некоторых полихет целая особь может восстановиться из небольшого участка тела), а у некоторых животных с регулятивным развитием (морские ежи, млекопитающие) — достаточно слабо.

Многие беспозвоночные способны к регенерации значительной части тела. У большинства видов губок, гидроидных полипов, многих видов плоских, ленточных и кольчатых червей, мшанок, иглокожих и оболочников из небольшого фрагмента тела может регенерировать целый организм. Особенно примечательна способность к регенерации у губок. Если тело взрослой губки продавить через сетчатую ткань, то все клетки отделятся друг от друга, как просеянные сквозь сито. Если затем поместить все эти отдельные клетки в воду и осторожно, тщательно перемешать, полностью разрушив все связи между ними, то спустя некоторое время они начинают постепенно сближаться и воссоединяются, образуя целую губку, сходную с прежней. В этом участвует своего рода «узнавание» на клеточном уровне, о чем свидетельствует следующий эксперимент: губки трёх разных видов разделяли описанным способом на отдельные клетки и как следует перемешивали. При этом обнаружилось, что клетки каждого вида способны «узнавать» в общей массе клетки своего вида и воссоединяются только с ними, так что в результате образовалась не одна, а три новых губки, подобные трём исходным. Из других животных к восстановлению целого организма из взвеси клеток способна только гидра.

Регенерация у человека

У человека хорошо регенерирует эпидермис, к регенерации способны также такие его производные, как волосы и ногти. Способностью к регенерации обладает также костная ткань (кости срастаются после переломов). С утратой части печени (до 75 %) оставшихся фрагментов начинают усиленно делиться и восстанавливают первоначальные размеры органа. При определённых условиях могут регенерировать кончики пальцев[1]. В связи с обнаружением на регенерирующих тканях слабых электрических напряжений можно предположить, что слабые электрофорезные токи ускоряют регенерацию[источник не указан 620 дней].

См. также

Примечания

Литература

  1. Долматов И. Ю., Машанов В. С. Регенерация у голотурий. — Владивосток: Дальнаука, 2007. — 208 с.
  2. Tanaka EM. Cell differentiation and cell fate during urodele tail and limb regeneration. Curr Opin Genet Dev. 2003 Oct;13(5):497-501. PMID 14550415
  3. Nye HL, Cameron JA, Chernoff EA, Stocum DL. Regeneration of the urodele limb: a review. Dev Dyn. 2003 Feb;226(2):280-94. PMID 12557206
  4. Gardiner DM, Blumberg B, Komine Y, Bryant SV. Regulation of HoxA expression in developing and regenerating axolotl limbs. Development. 1995 Jun;121(6):1731-41. PMID 7600989
  5. Putta S, Smith JJ, Walker JA, Rondet M, Weisrock DW, Monaghan J, Samuels AK, Kump K, King DC, Maness NJ, Habermann B, Tanaka E, Bryant SV, Gardiner DM, Parichy DM, Voss SR, From biomedicine to natural history research: EST resources for ambystomatid salamanders. BMC Genomics. 2004 Aug 13;5(1):54. PMID 15310388
  6. Andrews, Wyatt. Medicine's Cutting Edge: Re-Growing Organs, Sunday Morning, CBS News (March 23, 2008).

dic.academic.ru

Процессы приспособления и компенсации — Википедия

Приспособле́ние в (адапта́ция) к меняющимся условиям существования является наиболее общим свойством живых организмов. Все патологические процессы, по существу, можно разделить на две группы: (1) процессы повреждения (альтеративные процессы) и (2) процессы приспособления (адаптивные процессы).

К механизмам, обеспечивающим приспособление, относятся специальные защитные системы, регуляция функций организма и избегающее поведение.

I. Специальные защитные системы, препятствующие наиболее разрушительным внешним воздействиям

  1. Иммунная система и система мононуклеарных фагоцитов как защита от генетически чужеродной экспансии
  2. Механизм воспаления и тесно связанный с ним феномен репаративной регенерации как универсальные способы восстановления повреждённых тканей
  3. Система антибластомной резистентности, препятствующая возникновению незрелых злокачественных опухолей
  4. Свёртывание крови (гемокоагуляция, тромбоз) как защита от потери внутрисосудистой жидкой ткани
  5. Стресс-система, обеспечивающая развитие стресс-синдрома.

II. Механизмы регуляции всех функций организма.

III. Избегающее поведение (его формирует ноцицептивная система).

Выделяют три стадии в развитии адаптивного процесса:

  1. Рецепция адаптогена (адаптогенного стимула) — восприятие изменения какого-либо параметра среды
  2. Регуляция адаптогенеза (настройка силы и длительности адаптивного ответа)
  3. Адаптивный ответ (адаптивная реакция) — изменение характера функционирования организма или его отдельных структур, соответствующее изменившимся внешним условиям.

Приспособительные реакции подразделяют на (1) ортоадаптивные, (2) дизадаптивные и (3) компенсаторные.

I. Ортоадаптация (оrtoadapt) – (orto - правильный, прямой; adapt — приспособляю) - метод воздействия на живой организм различными способами с учетом его индивидуальных особенностей, физических и психо-физиологических нарушений с целью их исправления и правильного приспособления к условиям окружающей среды. Ортоадаптация разделяется на динамическую ортоадаптацию и статическую ортоадаптацию.

Динамическая ортоадаптация – (dinamic – движение, orto - правильный, прямой; adapto — приспособляю) – метод воздействия на живой организм, используя различные виды и способы дозированной двигательной активности с учетом общего состояния организма, его индивидуальных особенностей, физических и психо-физиологических нарушений с целью их исправления, приспособления к условиям окружающей среды и ведения полноценного образа жизни.

Статическая ортоадаптация – (static-постоянство, orto - правильный, прямой; adapto — приспособляю) – метод воздействия на живой организм с использованием различных искусственных и естественных приспособлений и устройств для полноценной коррекции и создания его правильного положения в периоды сна, работы и отдыха, с учетом общего состояния организма, его индивидуальных особенностей, физических и психо-физиологических нарушений и с целью его приспособления к условиям окружающей среды и ведения полноценного образа жизни.

II. Дизадаптация (патологическая адаптация) — неадекватная приспособительная реакция

  1. Гиперадаптация — избыточный адаптивный ответ (аллергия; дистресс-синдром; фибринозное, геморрагическое и гнойное воспаление; гиперрегенерация)
  2. Гипоадаптация — недостаточность адаптогенеза (иммунодефицит, гипорегенерация)
  3. Анадаптация — неспособность к адаптивному ответу (крайняя степень гипоадаптации)
  4. Дезадаптация — срыв адаптации.

III. Компенсация (компенсаторные, или эксквизитные, реакции).

Дезадаптация (срыв адаптации) является вариантом анадаптивных состояний (приобретённая анадаптация). Дезадаптация представляет собой достижение предела адаптации для данного организма.

Исходами дезадаптации являются:

  • Смерть организма при необратимой дезадаптации
  • Реадаптация (восстановление приспособительных возможностей) при обратимой дезадаптации.

Аналогичные дезадаптации и реадаптации состояния в случае компенсаторных процессов обозначаются терминами «декомпенсация» и «рекомпенсация» соответственно.

Компенсация (компенсаторные процессы) — адаптация в условиях болезни, приспособление к патологическим условиям существования организма. Сформированное таким образом приспособление (стадия компенсации) рано или поздно завершается истощением функциональных возможностей и срывом компенсации — декомпенсацией (стадия декомпенсации). При декомпенсации жизненно важных функций наступает смерть организма. Рекомпенсация возможна только путём замены «изношенного» органа полноценным донорским (трансплантация органа). Таким образом, решение проблемы рекомпенсации зависит от успехов трансплантационной медицины.

Морфология приспособительных процессов[править | править код]

В отечественной патологической анатомии среди приспособительных процессов, помимо воспаления, иммунного ответа и тромбоза, традиционно рассматривают объёмные процессы (атрофию и гипертрофию), регенерацию, дисплазию, организацию и стресс-синдром.

Объёмные процессы[править | править код]

К объёмным процессам относят атрофию («негативный объёмный процесс») и гипертрофию («позитивный объёмный процесс»). Своеобразным вариантом гипертрофии является гиперплазия.

Гипертрофия и гиперплазия[править | править код]

Гипертрофи́я — увеличение объёма какой-либо биологической структуры (органа, ткани, клетки, органеллы). Исключением является организм в целом: не принято говорить о гипертрофии всего тела человека. Гипертрофия может быть врождённым процессом. Гиперплази́я — гипертрофия ткани за счёт увеличения количества образующих её клеток, т.е. в результате их активного деления. Гиперплазия — один из вариантов разрастания тканей (другой вариант — опухоль). В отличие от гиперплазии, опухолевый рост не является приспособительным процессом. Гипертрофия не всегда относится к патологическим процессам, в ряде случаев (нейрогуморальная гипертрофия) она носит физиологический характер.

Варианты гипертрофии классифицируют следующим образом:

I. Приспособительные (адаптивные) варианты

  1. Нейрогуморальная гипертрофия (физиологическая и патологическая)
  2. Гипертрофические разрастания.

II. Компенсаторные варианты

  1. Рабочая гипертрофия
  2. Викарная (заместительная) гипертрофия.
  3. Регенераторная гипертрофия.

III. Врождённая гипертрофия.

Нейрогуморальная гипертрофия — гипертрофия, развивающаяся под влиянием гормонов, стимулирующих деление клеток. Выделяют (1) физиологические и (2) патологические варианты нейрогуморальной гипертрофии. Примером физиологической нейрогуморальной гипертрофии является увеличение матки при беременности и молочных желёз при лактации. К патологической нейрогуморальной гипертрофии относятся гиперплазия эндометрия, нодулярная гиперплазия простаты, увеличение органов при синдромах гиперпродукции соматотропного гормона (гигантизме и акромегалии) и т.п.

Гипертрофические разрастания — разрастания тканей при нарушениях крово- и лимфообращения (фиброз), а также на фоне хронического воспаления (фиброэпителиальные и гиперпластические полипы). [Аденоматозные полипы, в отличие от гиперпластических и фиброэпителиальных, являются доброкачественными опухолями, разновидностью аденом.]

Рабочая гипертрофия — гипертрофия гиперфункционирующего органа. Типичным примером рабочей гипертрофии служит гипертрофия миокарда левого желудочка при длительной артериальной гипертензии.

Викарная гипертрофия — гипертрофия одного из парных органов при отсутствии (аплазия, хирургическое удаление), недоразвитии (врождённой гипоплазии) или приобретённой гипофункции другого. Наиболее характерна викарная гипертрофия почки. Викарную гипертрофию можно рассматривать как разновидность рабочей гипертрофии.

Регенераторная гипертрофия — гипертрофия паренхиматозных клеток органа вокруг рубца при субституции. Так, при инфаркте миокарда по периферии сформированного пост-инфарктного рубца сохранные кардиомиоциты существенно увеличиваются, тем самым частично компенсируя функцию погибших клеток. Регенераторная гипертрофия также является своеобразным вариантом рабочей гипертрофии.

Врождённая гипертрофия — один из видов пороков развития органов (например, врождённая гипертрофия больших слюнных желёз).

Атрофия[править | править код]

Атрофи́я — уменьшение объёма какой-либо биологической структуры (органа, ткани, клетки, органеллы) или организма в целом. Для того, чтобы произошло уменьшение объёма структуры, она должна быть соответствующим образом развита, поэтому атрофию необходимо отличать от врождённой гипоплазии (недоразвития органа). Следовательно, атрофия всегда является приобретённым процессом.

Атрофию подразделяют на местную и общую, физиологическую и патологическую.

I. Общая физиологическая атрофия.

II. Местная физиологическая атрофия (инволюция).

III. Общая патологическая атрофия (кахексия).

IV. Местная патологическая атрофия

  1. Дисфункциональная атрофия (атрофия от бездействия)
  2. Прессогенная атрофия (атрофия от давления)
  3. Нейротическая (нейролитическая) атрофия
  4. Атрофия при хроническом нарушении кровообращения
  5. Атрофия при действии химических и физических факторов
  6. Псевдогипертрофия.

Общая физиологическая атрофия развивается в старости: уменьшаются отдельные органы и организм в целом.

Инволюция («обратное развитие органов») также относится к атрофическим процессам физиологического характера, например, возрастная инволюция тимуса, пост-гравидарная инволюция эндометрия и т.п.

Кахексия (истощение, маразм) развивается при длительном полном голодании (алиментарная кахексия), хронических инфекционных заболеваниях (например, при туберкулёзе), злокачественных опухолях («раковая кахексия»), при тяжёлой гипофункции аденогипофиза («гипофизарная кахексия»), гипоталамуса («церебральная кахексия»). Для истощения характерна бурая атрофия миокарда и печени.

Дисфункциональная атрофия — атрофия гипофункционирующего органа (например, атрофические процессы в скелетных мышцах при длительной иммобилизации конечности).

Прессогенная атрофия — атрофия, вызванная длительным сдавлением органа или его части. Типичными примерами прессогенной атрофии являются атрофия мозга при гидроцефалии и атрофия почки при гидронефрозе. В первом случае ткань головного мозга сдавлена блокированным в желудочках ликвором, во втором — на ткань почки оказывает давление моча, переполняющая чашечно-лоханочную систему органа при нарушении её оттока.

Нейротическая атрофия — атрофия денервированной ткани. Правильно называть данный процесс «нейролитической артрофией», однако слог «-ли-» по какой-то причине выпал и термин стали использовать в усечённом варианте. Нейротическую атрофию можно рассматривать как разновидность дисфункциональной атрофии, т.к. функция денервированной ткани снижается или полностью выпадает.

Атрофия при хроническом нарушении кровообращения (хронической ишемии и хроническом застойном полнокровии) проявляется уменьшением объёма паренхимы органа, в то время как строма может подвергаться гипертрофии за счёт фиброза.

Атрофия при действии химических и физических факторов. Различные факторы химической и физической природы способны вызывать атрофический процесс. Так, ионизирующее излучение приводит к атрофии ткани красного костного мозга (радиогенная атрофия миелоидной ткани), длительное применение в больших дозах глюкокортикоидных гормонов способствует развитию атрофии пучковой зоны коры надпочечников и т.п.

Псевдогипертрофия — атрофия паренхимы при одновременной гипертрофии стромы органа. Данный процесс относится к вариантам атрофии, т.к. при этом функция органа снижается. Гипертрофия стромы может развиваться за счёт фиброза (например, при гипертрофическом циррозе печени) или липоматоза (например, так называемое вакатное ожирение скелетных мышц).

Организация[править | править код]

Организацией в отечественной патологической анатомии называют четыре формы фиброза:

  1. Организация детрита — замещение волокнистой тканью некротических масс
  2. Организация тромботических масс (организация тромба)
  3. Организация фибринозного экссудата
  4. Инкапсуляция — обрастание фиброзной тканью детрита, инородных тел или погибших паразитов с формированием соединительнотканной капсулы.

Дисплазия[править | править код]

Дисплази́я — нарушение дифференцировки (созревания) тканей и клеток.

Классификация[править | править код]

Различают дисплазию тканей и дисплазию клеток.

I. Дисплазия ткани

  1. Врождённая тканевая дисплазия
  2. Постнатальная тканевая дисплазия.

Варианты врождённой тканевой дисплазии

  • Персисте́нция эмбриональных структур
  • Гама́ртия
  • Хори́стия (врождённая гетеротопи́я).

II. Дисплазия клеток

  1. Дисплазия I степени (интраэпителиальная неоплазия I степени)
  2. Дисплазия II степени (интраэпителиальная неоплазия II степени)
  3. Дисплазия III степени (вместе с карциномой in situ обозначается термином «интраэпителиальная неоплазия III степени»).
Тканевая дисплазия[править | править код]

Тканевая дисплазия — нарушение нормального соотношения элементов в ткани или появление структур, не встречающихся в норме.

Тканевая дисплазия может быть (1) врождённой или (2) развивается в постнатальном онтогенезе. Типичным примером постнатальной тканевой дисплазии является доброкачественная дисплазия молочной железы (фиброзно-кистозная болезнь, мастопатия), при которой в ткани молочной железы увеличивается пропорция эпителиальных клеток («пролиферативная форма») или стромы («непролиферативная форма»). При дисплазии тимуса обычно увеличено количество эпителиальных клеток и снижено число тимоцитов.

Врождённая тканевая дисплазия проявляется тремя типами изменений: (1) персистенцией эмбриональных структур, формированием (2) гамартий и (3) хористий. Эмбриональные структуры (карман Ратке, жаберные щели, хорда и т.п.) в определённые сроки антенатального онтогенеза должны подвергаться инволюции. Если этого не происходит, их существование затягивается (эмбриональные структуры персистируют), т.е. в ткани остаются элементы, которых уже быть не должно. Гама́ртией называется избыточно развитый нормальный компонент ткани (например, кровеносные сосуды в ткани врождённых гемангиом, меланоциты в невусах). Хори́стия (врождённая гетеротопи́я) — появление в созревшей ткани нехарактерных для неё структур (например, ткани слюнных желёз в челюстных костях или панкреатической ткани в стенке желудка). Персистирующие эмбриональные структуры, гамартии и хористии могут служить источником развития опухолей (прогономы, гамартомы, хористомы), в том числе злокачественных.

Клеточная дисплазия[править | править код]

Дисплазия клеток — предраковый процесс, характеризующийся появлением признаков клеточного атипизма.

Выраженность клеточной дисплазии различная. Ранее выделяли три степени дисплазии клеток (лёгкая, умеренная и тяжёлая), в настоящее время часто ограничиваются двумя крайними степенями (low grade и high grade). Клеточная дисплазия особенно детально изучена для эпителиоцитов разных органов. В последние два десятилетия термин «клеточная дисплазия» (также как и термин «карцинома in situ») в патологоанатомической и онкологической практике заменён термином «интраэпителиальная неоплазия». При этом в рубрику «тяжёлой интраэпителиальной неоплазии» (III степени) включена тяжёлая дисплазия клеток (дисплазия III степени) и карцинома in situ. Тяжёлая форма клеточной дисплазии относится к облигатному предраку.

Регенерация[править | править код]

Регенера́ция — обновление и восстановление тканей.

Классификация[править | править код]

Формы регенерации классифицируют следующим образом:

I. Характер процесса

  1. Физиологическая регенерация
  2. Репаративная регенерация (репарация)
  3. Патологическая регенерация.

Формы репарации:

  • Реституция
  • Субституция.

Формы патологической регенерации:

  • Гиперрегенерация
  • Гипорегенерация
  • Метаплазия.

II. Особенности восстановления клеток

  1. Внутриклеточная регенерация
  2. Клеточная регенерация.

Физиологическая регенерация — обновление тканей. Физиологическая регенерация протекает постоянно во всех тканях организма, но с разной скоростью. Наиболее быстро обновляется миелоидная и лимфоидная ткань, а также эпителиальная выстилка желудка и кишечника. Очень медленное обновление происходит в скелетных (костной и хрящевой) тканях.

Регенерацию повреждённых тканей (т.е. их восстановление) подразделяют на репаративную и патологическую. Репаративная регенерация (репарация) — восстановление повреждённых тканей, при котором процесс регенерации протекает нормально, хотя и быстрее физиологической регенерации. Различают две формы репарации: реституцию и субституцию. Реституция — полное восстановление повреждённой ткани. Образовавшаяся ткань идентична преформированной ткани. Субституция — замещение повреждённой ткани рубцовой (грубоволокнистой) тканью.

Патологическая регенерация — восстановление повреждённых тканей, при котором ход регенерации нарушен. В зависимости от характера нарушения регенераторного процесса (избыточная регенерация, недостаточная регенерация или образование на месте одной другой, родственной ей ткани) выделяют три формы патологической регенерации: гиперрегенерацию, гипорегенерацию и метаплазию. Гиперрегенерация — образование излишней массы регенерирующей ткани (например, гипертрофический рубец). Гипорегенерация — вялая регенерация, при которой необходимого количества регенерирующей ткани не образуется (например, гипорегенерация тканей в трофических язвах кожи). Метаплазия рассмотрена отдельно.

Внутриклеточная регенерация — обновление и восстановление ультраструктур клетки. Условием внутриклеточной регенерации является обратимость повреждения (паранекротический процесс). В состоянии некробиоза (некрофанероза) внутриклеточная регенерация не возможна. Клеточная регенерация — регенерация ткани за счёт деления и последующего созревания клеток. Условием клеточной регенерации является способность клеток регенерирующей ткани к делению. У взрослого человека способность к активному делению теряют такие клетки, как кардиомиоциты и нейроны. В ходе клеточной регенерации выделяют две фазы: (1) фазу пролиферации, (2) фазу дифференцировки клеток.

Метаплазия[править | править код]

Метаплази́я — замещение одной ткани другой, родственной тканью. Метапластический процесс ограничен рамками одного зародышевого листка: одна эпителиальная ткань меняет другую эпителиальную ткань, один тип соединительной ткани замещается другим типом соединительной ткани. Случаи перехода эпителиальной ткани в соединительную, мышечную или нервную не известны. Возможность метаплазии обусловлена наличием клеток-предшественников, общих для нескольких типов ткани.

Наиболее часто метаплазия встречается в эпителиальных и соединительных тканях:

I. Метаплазия эпителиальных тканей

  1. Плоскоклеточная метаплазия
  2. Прозоплазия.

II. Метаплазия соединительных тканей

  1. Костная метаплазия
  2. Хрящевая метаплазия.

Самым распространённым вариантом метаплазии является плоскоклеточная метаплазия, при которой на месте однослойного эпителия образуется многослойный плоский эпителий. Так, при хроническом бронхите курильщиков развивается плоскоклеточная метаплазия слизистой оболочки бронхов. Дисплазия такого эпителия может завершиться возникновением плоскоклеточной карциномы лёгкого. Более того, все случаи основного морфологического типа рака лёгкого — плоскоклеточной карциномы — представляют собой результат малигнизации клеток в очагах плоскоклеточной метаплазии бронхов.

Прозоплазия — процесс, обратный плоскоклеточной метаплазии: на месте многослойного плоского эпителия образуется однослойный. Типичным примером прозоплазии служит эндоцервикоз (псевдоэрозия шейки матки), в очагах которой сквамозный эпителий эктоцервикса может трансформироваться в однослойный. Это происходит благодаря камбиальным клеткам эндоцервикального эпителия (их называют резервными), способными к двойной дифференцировке.

Среди форм метаплазии соединительных тканей наиболее часто встречается метаплазия рубцовой (грубоволокнистой) ткани в костную. Например, в зажившем очаге первичного туберкулёза в верхушке лёгкого (очаге Гона) нередко обнаруживается губчатая костная ткань.

Термин «метаплазия» в ряде случаев используется не корректно. Так, «миелоидная метаплазия» (экстрамедуллярный гемопоэз) собственно метаплазией не является, при этом происходит размножение кроветворных клеток в селезёнке, лимфоузлах, в жировой ткани за пределами костного мозга, а не превращение тканей селезёнки, лимфатических узлов или белой жировой ткани в миелоидную, как считали ранее. «Кишечная метаплазия» («энтеролизация») слизистой оболочки желудка (появление в ней слизистых клеток кишечного типа) также является не точным обозначением процесса, т.к. действительной замены желудочного эпителия кишечным в данном случае не происходит. То же можно сказать и о «желудочной метаплазии» («гастролизации») слизистой оболочки кишечника.

Регенерация отдельных видов тканей[править | править код]

Регенерация костной ткани. Регенерирующие ткани, расположенные в области костных отломков, формируют сначала первичную мозоль, затем — окончательную костную мозоль. При неосложнённом переломе регенерацию кости называют первичным костным сращением, при осложнённом — вторичным костным сращением. Первичная мозоль при первичном костном сращении проходит две морфологические стадии: (1) соединительнотканную и (2) костную, в то время как при вторичном сращении первичная мозоль является исключительно костно-хрящевой, что может привести к образованию ложного сустава.

Регенерация мышечных тканей. Обширные повреждения гладкомышечной ткани регенерируют с образованием рубца (субституция). При её незначительном повреждении деление лейомиоцитов приводит к полному закрытию дефекта (реституция). Регенерация скелетной мышечной ткани связана с активностью камбиальных клеток, расположенных под сарколеммой миона (миосателлитоцитов). Клетки-сателлиты при этом делятся и сливаются между собой, образуя в конечном счёте новый мион. В миокарде на месте погибших кардиомиоцитов образуется только рубец (субституция).

Регенерация сосудов. При повреждении стенки крупного сосуда регенерация протекает по типу субституции. Капилляры регенерируют (1) почкованием и (2) аутогенным путём. Почкование характеризуется ответвлением нового капилляра от образованного ранее. Аутогенный механизм заключается в появлении обособленных пролифератов эндотелиальных клеток, формирующих отдельные сосуды, которые затем объединяются между собой.

Регенерация волокнистой ткани. Волокнистая ткань при повреждении регенерирует через стадию грануляционной ткани. Грануляционная ткань ярко-красного цвета, очень мягкая, в дне кожной раны она имеет характерную мелкозернистую поверхность, образованную приподнимающимися капиллярными петлями (отсюда её название: от лат. granula — зёрнышко). При микроскопическом исследовании в грануляционной ткани обнаруживаются многочисленные полнокровные капилляры, окружённые клетками воспалительного инфильтрата. Разрастание грануляционной ткани лежит в основе одной из форм продуктивного воспаления — гранулирующего воспаления. При реституции грануляционная ткань созревает в рыхлую или плотную неоформленную волокнистую ткань, аналогичную преформированной; при субституции — в грубоволокнистую (рубцовую) ткань.

Заживление ран. Выделяют четыре варианта заживления ран:

  1. Прямая эпителизация при дефектах кожи в пределах эпидермиса
  2. Заживление первичным натяжением (per primam intentionem) — без нагноения раны
  3. Заживление вторичным натяжением (per secundam intentionem) — с развитием гнойного воспаления
  4. Заживление третичным натяжением (per tertiam intentionem) — под образовавшейся коркой (под струпом).

Стресс-синдром[править | править код]

Стресс-синдром — комплекс приспособительных изменений, направленных на мобилизацию энергетических ресурсов организма. Он развивается при физических и психологических нагрузках, а также при различных заболеваниях.

Различают два варианта стресс-синдрома: (1) эустресс — адекватный (физиологический) стресс и (2) дистресс — неадекватный (патологический) стресс.

Стресс-реакция протекает в две стадии — острую и хроническую. Острая стадия обеспечивается в основном катехоламинами (мозговым веществом надпочечников, симпатическими параганглиями), хроническая стадия — глюкокортикоидными гормонами (пучковой зоной коры надпочечников). Поэтому типичными морфологическими проявлениями дистресс-синдрома являются изменения надпочечников (гиперплазия коры и мозгового вещества, при особенно длительном стрессе формируется узелковая гиперплазия коры или аденома коры надпочечников) и аденогипофиза (очаговая или диффузная гиперплазия кортикотропоцитов). Вследствие вторичного гиперкортицизма при дистресс-синдроме формируются различные нарушения в органах и тканях. Особенно ярким среди них является атрофия лимфоидной ткани, обусловливающая иммунодефицитное состояние больных. Глюкокортикоиды в высокой концентрации вызывают апоптоз лимфоцитов, поэтому различные органы иммунной системы уменьшаются (акцидентальная трансформация тимуса, субатрофия лимфатических узлов и белой пульпы селезёнки).

  • Давыдовский И. В. Общая патологическая анатомия. 2-е изд.— М., 1969.
  • Калитеевский П. Ф. Макроскопическая дифференциальная диагностика патологических процессов.— М., 1987.
  • Общая патология человека: Руководство для врачей / Под ред. А. И. Струкова, В. В. Серова, Д. С. Саркисова: В 2 т.— Т. 2.— М., 1990.
  • Патологическая анатомия болезней плода и ребёнка / Под ред. Т. Е. Ивановской, Б. С. Гусман: В 2 т.— М., 1981.
  • Саркисов Д. С. Очерки по структурным основам гомеостаза.— М., 1977.
  • Саркисов Д. С. Регенерация и её клиническое значение.— М., 1970.
  • Саркисов Д. С., Аруин Л. И., Туманов В. П. Морфология компенсаторно-приспособительных процессов.— М., 1983.
  • Саркисов Д. С., Втюрин Б. В. Электронная микроскопия деструктивных и регенераторных процессов.— М., 1967.
  • Саркисов Д. С., Пальцев М. А., Хитров Н. К. Общая патология человека.— М., 1997.
  • Струков А. И., Серов В. В. Патологическая анатомия.— М., 1995.
  • Тератология человека: Руководство для врачей / Под ред. Г. И. Лазюка.— М., 1991.

ru.wikipedia.org

РЕГЕНЕРАЦИЯ - это... Что такое РЕГЕНЕРАЦИЯ?

  • РЕГЕНЕРАЦИЯ — РЕГЕНЕРАЦИЯ, процесс образования нового, органа или ткани на месте удаленного тем или иным образом участка организма. Очень часто Р. определяется как процесс восстановления утраченного, т.. е. образование органа, подобного удаленному. Такое… …   Большая медицинская энциклопедия

  • РЕГЕНЕРАЦИЯ — (поздн. лат., от лат. re опять, вновь, и genus, eris род, поколение). Возрождение, возобновление, восстановление того, что было разрушено. В фигуральном значении: перемена к лучшему. Словарь иностранных слов, вошедших в состав русского языка.… …   Словарь иностранных слов русского языка

  • РЕГЕНЕРАЦИЯ — РЕГЕНЕРАЦИЯ, в биологии способность организма к замещению одной из утраченных частей. Термин регенерация также относится к форме БЕСПОЛОГО РАЗМНОЖЕНИЯ, при котором новая особь возникает из отделенной части материнского организма …   Научно-технический энциклопедический словарь

  • регенерация — восстановление, рекуперация; возмещение, регенерирование, возобновление, гетероморфоз, петтенкоферирование, возрождение, морфаллаксис Словарь русских синонимов. регенерация сущ., кол во синонимов: 11 • возмещение (20) …   Словарь синонимов

  • Регенерация — 1) восстановление с помощью определенных физико химических процессов исходных состава и свойств отработанных продуктов для повторного их использования. В военном деле широкое распространение получила регенерация воздуха (особенно на подводных… …   Морской словарь

  • Регенерация — – возвращение отработанному продукту исходных свойств. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева, Москва, 2007 г. 110 стр.] Регенерация – восстановление отработанных… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • РЕГЕНЕРАЦИЯ — (1) восстановление исходных свойств и состава отработавших материалов (воды, воздуха, масел, резины и др.) для их повторного использования. Осуществляется с помощью определённых физ. хим. процессов в специальных устройствах регенераторах. Широко… …   Большая политехническая энциклопедия

  • РЕГЕНЕРАЦИЯ — (от позднелат. regeneratio возрождение возобновление), в биологии восстановление организмом утраченных или поврежденных органов и тканей, а также восстановление целого организма из его части. В большей степени присуща растениям и беспозвоночным… …   Большой Энциклопедический словарь

  • РЕГЕНЕРАЦИЯ — в технике,1) возвращение отработавшему продукту исходных качеств, напр. восстановление свойств отработавшей формовочной смеси в литейном производстве, очистка отработавшего смазочного масла, превращение изношенных резиновых изделий в пластичную… …   Большой Энциклопедический словарь

  • РЕГЕНЕРАЦИЯ — РЕГЕНЕРАЦИЯ, регенерации, мн. нет, жен. (лат. regeneratio восстановление, возвращение). 1. Нагрев газа и воздуха, поступающих в печь, отработанными продуктами горения (тех.). 2. Воспроизведение животными утерянных органов (зоол.). 3. Излучение… …   Толковый словарь Ушакова

  • РЕГЕНЕРАЦИЯ — РЕГЕНЕРАЦИЯ, и, жен. (спец.). Восстановление, возобновление, возмещение чего н. в процессе развития, деятельности, обработки. Внутриклеточная р. Р. материалов. Р. воздуха. | прил. регенерационный, ая, ое и регенеративный, ая, ое. Толковый словарь …   Толковый словарь Ожегова

  • dic.academic.ru

    Усиленная регенерация у человека

    Сейчас много говорят о выращивании отдельных органов вне организма и приращении их взамен утраченных. Но, может быть, есть способ лучше — просто восстанавливать или, выражаясь по-научному, регенерировать свои органы?

    В принципе, человек отчасти наделен этим даром. Наши порезы зарастают благодаря регенерации кожи. Кровь тоже регенерируется. Но хочется большего.  Причем мечтают об этом не только простые обыватели, но и ученые.

    Скажем, сотрудники Лаборатории проблем регенерации Института биологии развития РАН, которой руководит доктор биологических наук Виктор Миташов, давно разрабатывает различные методы восстановления кости и нервных тканей человека, а в последнее время и сетчатки глаза.  Вообще-то низшие организмы чаще способны к регенерации, чем более высокоорганизованные. 

    Так, среди беспозвоночных гораздо больше видов, способных восстанавливать утраченные органы, чем среди позвоночных, но лишь у некоторых из них возможна регенерация целой особи из небольшого ее фрагмента. Такие примитивные животные, как гребневики и коловратки, практически не способны к регенерации, а у гораздо более сложных ракообразных и амфибий эта способность хорошо выражена.  

    Многие бы хотели получит себе регенерацию как у Росомахи, героя американских комиксов. Он может за считанные минуты залечить даже самые страшные раны

     

    Особенно удивительна способность к регенерации у губок. Ученые поставили необычный эксперимент; продавили тело взрослой губки через сетчатую ткань и отделили все образовавшиеся фрагментики друг от друга. Оказалось, что если затем поместить эти маленькие кусочки в воду и хорошенько перемешать, полностью разрушив все связи между ними, то некоторое время спустя они начнут постепенно сближаться и в конце концов воссоединятся, образовав целую губку, сходную с прежней. В этом участвует своего рода «узнавание» на клеточном уровне.

    Еще один рекордсмен регенерации — ленточный червь, который способен воссоздать целую особь из любого участка своего тела. Теоретически возможно, разрезав одного червя на 200 000 кусочков, получить из него в результате регенерации столько же новых червей. А из одного луча морской звезды может возродиться целая звезда.

    Но куда более известен другой пример — ящерицы, которые отращивают себе хвост, и тритоны, которые могут регенерировать глаза, лапы и хвост до шести раз.

    Увы, человек этого бесценного свойства лишен. А не может ли современная наука помочь нам овладеть соответствующими механизмами?

    При пересчете на жизнь человека процесс восстановления подобный тритоновскому мог бы занять у нас всего полгода. Однако разобраться до конца, каким образом тритон за месяц восстанавливает глаз, очень непросто. Ученые повторить его подвиги пока не могут. Но уже стало ясно, как он и ему подобные, это делают.

    Начнем с самого начала — с рождения организма. Известно, что в ходе зародышевого развития клетки любого многоклеточного организма проходят специализацию. Из одних получаются, например, ноги, из других, скажем, мускулы, жабры или глаза. Так называемые Дох-гены дают команду как всему организму, так и конкретным органам развиваться по определенному плану — чтобы не получилось, что глаз вырастет там, где должна быть нога.

    У мушки дрозофилы 8 Дох-генов, у лягушки — 6, а у человека — 38. И выяснилось, что при регенерации тритон «вспоминает» свое эмбриональное прошлое, включая генетическую программу, которая активирует Дох-гены и восстанавливает удаленные или поврежденные ткани и органы.

    Но глаз или хвост должен из чего-то возникнуть — не может же он регенерироваться из воздуха. У организма есть два пути — нарабатывать новые клетки, новый строительный материал либо пользоваться тем, что осталось после утраты органа. 

    Выяснилось, что природа использует оба этих способа. «Кирпичами» для регенерации служат эмбриональные стволовые клетки. Так называют клетки эмбриона, которые в своем развитии просто не доросли до стадии специализации и, следовательно, способны под воздействием тех или иных факторов превратиться в клетки различных тканей и органов более чем двух сотен типов.

    Причем при регенерации «старые» клетки тритона путем сложных манипуляций превращаются в сходные с эмбриональными. С ними в последнее время связано много споров. Дело в том, что для ученых главный источник эмбриональных стволовых клеток — человеческие эмбрионы. Биологи с большим энтузиазмом изучают свойства эмбриональных стволовых клеток: ведь в случае успеха эти клетки откроют совершенно новые возможности в хирургии и обеспечат восстановление тех или иных органов. Если в результате заболевания выйдут из строя какие-то группы клеток, пусть даже узкоспециализированных, то будет возможность их заменить.

    И наши биологи в этих работах вовсе не на последних ролях. Скажем, академик Российской академии естественных наук Леонид Полежаев на протяжении десятилетий занимался проблемой регенерации костей свода черепа. Сначала ему удалось добиться регенерации костей черепа у собак и крыс. Затем совместно с медиками из Института нейрохирургии имени Н.Н. Бурденко АМН СССР попытались восстанавливать кости черепа у больных с травмами головы.

    При этом использовались костные опилки, которые «побуждали» кости человеческого черепа к регенерации. В результате область травмы полностью закрывалась новой костью. При помощи этой методики было проведено более 250 операций.

    Недавно группа ученых из Токийского университета под руководством Макото Асашимы культивировала в специальном растворе витамина А тысячи эмбриональных стволовых клеток, варьируя концентрацию витамина. Низкая концентрация активирует гены, которые контролируют развитие глазной ткани, тогда как высокая концентрация запускает работу генов, ответственных за формирование органа слуха.

    Макото Асашима заявил, что таким образом целый лягушачий глаз можно получить за пять дней. Подобным, но более простым методом прежде были выращены и успешно пересажены лягушке новые почки. Животное-реципиент после этой операции прожило месяц.

    А специалисты из токийского Университета Кэйо опубликовали отчет об успешном эксперименте по использованию стволовых клеток человеческого эмбриона для восстановления поврежденных тканей спинного мозга у обезьян. Как сообщил руководитель работ профессор Хидэюки Окано, исходные стволовые клетки были взяты у погибшего человеческого эмбриона с согласия родителей и одобрения университетского совета по этике. 

    Затем эти клетки размножили в питательной среде и подсадили пятерым обезьянам (по 10 млн клеток каждой), у которых передние конечности были обездвижены в результате травмы позвоночника. У одного примата все опорно-двигательные функции вошли в норму уже через два месяца, а у остальных процесс восстановления продолжается.

    В лаборатории Виктора Миташова успешно проведены опыты по восстановлению глаза тритона. А ныне исследователи готовятся к экспериментам по выращиванию сетчатки глаза человека.

    Но вот о возможности выращивания целого глаза специалисты говорят осторожно. Их можно понять: слишком велика эволюционная пропасть между тритоном и человеком. Нос другой стороны, механизмы развития органов похожи, поэтому есть надежда, что когда-нибудь биологам удастся заставить травмированного человека, «впадая в детство», выращивать нужные органы — зубы, взамен выпавших, новые клетки печени, почек, поджелудочной железы, новые мышечные ткани для сердца, пораженного инфарктом миокарда. 

    paranormal-news.ru

    55.Понятие о клеточной и внутриклеточной регенерации, отличительные особенности,значение.

    Регенерация внутриклеточная — это Р. по­вреж­ден­ных орга­но­и­дов и мем­бран­ных струк­тур клет­ки; ха­рак­тер­на для кле­ток мио­кар­да, нерв­ной си­с­темы.

    Регенерация клеточная — это Р. орга­нов или тка­ней пу­тем разм­ноже­ния не­по­вреж­ден­ных кле­ток; ха­рак­тер­на для по­кров­но­го эпи­те­лия, со­е­ди­ни­тель­ной тка­ни.

    Внутриклеточная форма регенерации является универсальной, так как она свойственна всем органам и тканям без исключения. Однако структурно-функциональная специализация органов и тканей в фило- и онтогенезе «отобрала» для одних преимущественно клеточную форму, для других — преимущественно или исключительно внутриклеточную, для третьих — в равной мере обе формы регенерации.  К органам и тканям, в которых преобладает клеточная форма регенерации, относятся кости, эпителий кожи, слизистые оболочки, кроветворная и рыхлая соединительная ткань и т. д. Клеточная и внутриклеточная формы регенерации наблюдаются в железистых органах (печень, почка, поджелудочная железа, эндокринная система), легких, гладких мышцах, вегетативной нервной системе.  К органам и тканям, где преобладает внутриклеточная форма регенерации, относятся миокард и скелетные мышцы, в центральной нервной системе эта форма регенерации становится единственной формой восстановления структуры. Преобладание той или иной формы регенерации в определенных органах и тканях определяется их функциональным назначением, структурно-функциональной специализацией. 

    56. Внутри клеточная регенерация: понятия,разновидности,строение.

    Регенерация поврежденных органоидов и мембранных структур клетки; характерна для клеток миокарда, нервной системы.

    1)Молекулярная(восст. нити ДНК, образование новых фермнетов)

    2)внутриорганойдная( увеличение кол-ва крист митохондрий, увеличение цистерн ЭПС)

    3)органойдная ( синтез новых митохондрий,новых рибосом)

    57.Дифферон: понятие,характеристика,разновидности,строение.

    Дифферон- последовательный ряд клеток, развивающихся из общего предшественника.Состоит из 3-х звеньев(начальное, промежуточное ,конечное). В образовании конкретной ткани могут участвовать несколько различных дифферонов, которые взаимодействуют и объединяются для выполнения важнейших функций организма. Взаимодействие клеток в формирующейся ткани может быть контактным или дистантным(с выд.клет. вещ-в) Дифферон бывает полный(все 3 звена) и неполный ( отсутствует только 1-е,либо 1 и 2-е звено)

    58. Понятие о теории дифферонного строения тканей.(из тетради)

    Каждая ткань состоит из нескольких дифферонов клеток(совокупность клеток одного гистогенетического ряда, находящихся на разных стадий дифференцировки)

    (в тетради пример диф-ки эритроцитов)

    Начальное звено - всегда представлено низкодифф. стволовой клеткой.

    Промежуточное - все клетки, находящиеся в процессе развития.

    Конечное – высокодифференцируемая клетка, достигшая апогея своего развития(не способна к делению)

    59. Классификация тканей по регенраторной способности в свете теории дифферонного строения тканей.

    Динамичные ткани. Дифферон полный; регенерирует по клеточному типу(кровь и эпителий ткани)

    Статич. Ткани. Дифферон не полный есть только конечное звено; регенерация только внутриклеточная.

    Растущие ткани. Дифферон неполный; отсутсвует начальное звено, клетки могут регенерироватьт по внутриклеточному типу в физиологических условиях или по клеточному типу в условиях репарации(гладкая мыш. ткань, клетки печени – гепотоциты)

    60.Совокупность клеточных форм, составляющих линию дифференцировки, называют диффероном, или гистогенетическим рядом. Дифферон составляют несколько групп клеток: 1) стволовые клетки, 2) клетки-предшественники, 3) зрелые дифференцированные клетки, 4) стареющие и отмирающие клетки. Стволовые клетки — исходные клетки гистогенетического ряда — это самоподдерживающаяся популяция клеток, способных дифференцироваться в различных направлениях. Обладая высокими пролиферативными потенциями, сами они (тем неменее) делятся очень редко. Эритроцитарный дифферон,Тромбоцитарный дифферон.Гранулоцитарный дифферон.Моноцитарный дифферон.Т-лимфоцитарный дифферон. В-лимфоцитарный дифферон. Различают полный дифферон - когда в ткани содержатся клетки всех этапов развития (например, эритроцитарный дифферон в красном костном мозге или эпидермальный дифферон в эпидермисе кожи)

    61. Совокупность клеточных форм, составляющих линию дифференцировки, называют диффероном, или гистогенетическим рядом. Дифферон составляют несколько групп клеток: 1) стволовые клетки, 2) клетки-предшественники, 3) зрелые дифференцированные клетки, 4) стареющие и отмирающие клетки. Стволовые клетки — исходные клетки гистогенетического ряда — это самоподдерживающаяся популяция клеток, способных дифференцироваться в различных направлениях. Обладая высокими пролиферативными потенциями, сами они (тем неменее) делятся очень редко. Эритроцитарный дифферон,Тромбоцитарный дифферон.Гранулоцитарный дифферон.Моноцитарный дифферон.Т-лимфоцитарный дифферон. В-лимфоцитарный дифферон. неполный дифферон - когда в тканях содержатся только переходные и зрелые или даже только зрелые формы клеток (например, нейроциты центральной нервной системы).

    65. Гомеоста́з-саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия. Стремление системы воспроизводить себя, восстанавливать утраченное равновесие, преодолевать сопротивление внешней среды. Регуляция химической деятельности клетки достигается с помощью ряда процессов, среди которых особое значение имеет изменение структуры самой цитоплазмы, а также структуры и активности ферментов. Авторегуляция зависит от температуры, степени кислотности, концентрации субстрата, присутствия некоторых макро- и микроэлементов

    66. Механизмы гомеостаза: обратная связь

    Основная статья: Обратная связь

    Когда происходит изменение в переменных, наблюдаются два основных типа обратной связи, или фидбэка, на которые реагирует система:

    Отрицательная обратная связь, выражающаяся в реакции, при которой система отвечает так, чтобы изменить направление изменения на противоположное. Так как обратная связь служит сохранению постоянства системы, это позволяет соблюдать гомеостаз.

    Например, когда концентрация углекислого газа в организме человека увеличивается, лёгким приходит сигнал к увеличению их активности и выдыханию большего количество углекислого газа.

    Терморегуляция — другой пример отрицательной обратной связи. Когда температура тела повышается (или понижается) терморецепторы в коже и гипоталамусе регистрируют изменение, вызывая сигнал из мозга. Данный сигнал, в свою очередь, вызывает ответ — понижение температуры (или повышение).

    Положительная обратная связь, которая выражается в усилении изменения переменной. Она оказывает дестабилизирующий эффект, поэтому не приводит к гомеостазу. Положительная обратная связь реже встречается в естественных системах, но также имеет своё применение.

    Например, в нервах пороговый электрический потенциал вызывает генерацию намного большего потенциала действия. Свёртывание крови и события при рождении можно привести в качестве других примеров положительной обратной связи.

    Устойчивым системам необходимы комбинации из обоих типов обратной связи. Тогда как отрицательная обратная связь позволяет вернуться к гомеостатическому состоянию, положительная обратная связь используется для перехода к совершенно новому (и, вполне может быть, менее желанному) состоянию гомеостаза, — такая ситуация называется «метастабильность». Такие катастрофические изменения могут происходить, например, с увеличением питательных веществ в реках с прозрачной водой, что приводит к гомеостатическому состоянию высокой эвтрофикации (зарастание русла водорослями) и замутнению.

    67. Пролиферативная активность клетки - это время жизни клетки от момента её образования до гибели или деления. Регулияция пролиферативной активности клетки зависит от межклеточного взаимодействия.

    68. У многоклеточных организмов регуляция пролиферации различных типов клеток происходит вследствие действия не одного какого-либо ростового фактора, а их совокупности. Кроме того, некоторые ростовые факторы, будучи стимуляторами для одних типов клеток, ведут себя как ингибиторы по отношению к другим. Классические ростовые факторы представляют собой полипептиды с молекулярной массой 7-70 кДа.

    69. Клеточная пролиферация-увеличение числа клеток (или только геномов при полиплоидии) путём митоза, приводящее к росту ткани, в отличие от др. способов увеличения её массы, напр. вследствие отёка. Интенсивность регулируется стимуляторами и ингибиторами, вырабатываемыми как вдали от реагирующих клеток (напр., гормонами), так и внутри них. В раннем эмбриогенезе происходит непрерывно. По мере дифференцировки периоды между делениями удлиняются. Нек-рые дифференцир. клетки, напр. нервные, не способны к пролиферации. Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.(пролиферация клеток гладкой мускулатуры).

    70. Апопто́з — программируемая клеточная смерть, регулируемый процесс самоликвидации на клеточном уровне, в результате которого клетка фрагментируется на отдельные апоптотические тельца, ограниченные плазматической мембраной. Фрагменты погибшей клетки обычно очень быстро (в среднем за 90 минут[фагоцитируются макрофагами либо соседними клетками, минуя развитие воспалительной реакции.

    Результатом апоптоза является постепенное и медленное избавление от "ненужных" в функциональном отношении на данный момент клеток. При этом не развивается воспаление и не нарушается нормальное функционирование соседних клеток, а также не происходит соединительнотканного замещения, что позволяет сохранить структуру органа. Функциональные элементы клетки, находящейся в состоянии апоптоза, не разрушаются, а поглощаются другими клетками и могут использоваться дальше. Особенно большую роль апоптоз играет в эмбриогенезе, когда важно постепенно избавляться от выполнивших свою функцию клеток, а активное фагоцитирование с развитием реакции воспаления может нарушить созревание плода.

    При реализации апоптоза условно можно выделить четыре стадии.

    Инициация —> Программирование —> Реализация программы —> Удаление погибшей клетки

    studfile.net

    Процесс регенерации клеток организма человека

    Итак, в прошлой работе мы выяснили, что оздоровить организм можно только с помощью системного подхода к оздоровлению. Теперь давайте рассмотрим с вами второй принцип сохранения здоровья. Как вы помните, это способность клетки к само возобновлению (регенерация клеток организма).
    Клетка просто обязана быть здоровый и давать здоровое потомство, даже в том случае, если клетка сама не здорова — потомство ее должно быть здоровым!
    Но для этого нужно, чтобы присутствовал строительный материал, которые способствует регенерации клеток. У клетки имеется генетическая память ее здоровья.
    А в чем могут возникнуть проблемы? Давайте посмотрим.

    Все представляете себе беременную женщину. Так вот если мы не будем ее кормить, что с ней случится, кто у нее родится и кого родит потом этот выросший в женщину ребенок, если ей тоже не давать питание во время беременности или некачественно кормить.

    А ведь мы с вами рассматривали уже жизнь клетки, она постоянно производит себе подобных и очень результативно — одна клетка дает две, каждая последующая еще по две уже 4 и этот цикл бесконечен.

    Процесс регенерации клеток

    Итак, мы выяснили что именно способствует быстрой регенерации здоровых клеток. Это качественное их питание.
    Так получается, что из-за нехватки питательных веществ, так называемого  строительного материала, каждое новое поколение клетки будет неполноценным, и не сможет выполнять своих функций.

    Организм человека построен из 12 систем. Каждая система включает в себя определенные органы, те в свою очередь строятся из тканей, а их уже образуют клетки. Так, если в процессе своего рождения, клетка недополучит строительный материал для своего развития, система правильно не сможет функционировать в  организме, и соответственно весь организм заработает неправильно.

    Так значит, для правильной регенерации здоровых клеток необходимо правильно питаться. Ведь через продукты питания, которыми мы питаемся, получают свое питание и наши клетки. Поэтому, питание человека должно быть полезным и сбалансированным с точки зрения витаминно-минерального комплекса. Это позволит снабдить клетки организма всем необходимым для ее регенерации питательным материалом, тогда будущие поколения клетки будут здоровыми, и новые клетки смогут правильно осуществлять свою жизнедеятельность, и, соответственно, организм наладит свое правильное функционирование.

    Правильная регенерация клеток — это ключ к здоровью и долгожительству

    Как пришли к этому открытию?

    Вот так казалось бы все просто. А ученым, чтобы прийти к таким выводам приходится работать многие годы.  К примеру, французский ученый доктор Алексис Каррел (AlexisCarrel), сумел на протяжении 34 лет продолжать жизнедеятельность сердца цыпленка. За что был удостоен Нобелевской премии.
    Он говорил о бессмертии клетки, оказывается вся суть ее жизни заложена в жидкой среде, в которой она пребывает и отмирает. При периодическом обновлении этой среды, клетка
    будет получать все необходимое, чтобы питаться и значит вечная жизнь будет обеспечена.

    Уважаемый читатель, как ты думаешь, какие продукты питания обеспечивают полноценное питание клеток (для их регенерации) и избавление организма от шлаков? Напиши свой рецепт, а я по традиции прокомментирую.

    andreybobkov.com

    Средства для регенерации тканей. Как ускорить процесс регенерации кожи

    Регенерация кожи представляет собой естественный процесс заживления поврежденных тканей и ускорения производства различных нужных и полезных соединений на молекулярном уровне. Процесс регенерации способствует образованию новых клеток и повышению защитных свойств кожных покровов.

    Прежде чем подобрать препараты, которые лучше всего подойдут для регенерации кожи, нужно изучить особенности этого процесса. Ткани человека от природы имеют склонность к самостоятельному восстановлению, поэтому усиленно обновляются после любого механического повреждения, большого количества прыщей или операции. В результате отмирания старых клеток кожи на их месте начинают появляться новые, которые заполняют собой поврежденные участки.

    С возрастом этот процесс замедляется, кожа начинает терять свой тонус и становится более восприимчивой к действию внешних факторов, таких как:
    • ультрафиолетовое излучение;
    • механические повреждения;
    • стрессы;
    • плохая экологическая обстановка и другие.

    Негативное влияние на синтез молодых клеток могут оказывать такие причины:

    • сильные стрессы;
    • ослабленный иммунитет;
    • частые простуды;
    • неправильный уход за кожей лица;
    • инфекции;
    • повышенные физические нагрузки.

    Примерно после 25 лет естественная регенерация тканей замедляется, поэтому требуется дополнительная помощь в виде специальных косметических средств или восстанавливающих процедур.

    Правильно подобранная мазь, крем или таблетки помогают повысить образование новых клеток и стимулировать внутренние резервы организма.

    Регенерация тканей бывает двух основных видов:
    • репаративная;
    • физиологическая.

    Репаративная регенерация кожи представляет собой процесс, восстанавливающий ткани, поврежденные в результате механического повреждения. В зависимости от того, как быстро произойдет этот процесс, будет зависеть останутся ли на коже шрамы или следы. Такое восстановление зависит от иммунитета, питания и состояния здоровья.

    От физиологического восстановления зависит то, насколько долго кожа лица и тела сохранит свою молодость и красоту. На этот процесс влияет физическое состояние, иммунитет и питание.

    Как ускорить регенерацию кожи

    Чтобы процесс восстановления тканей лица или тела протекал быстрее, можно использовать разные способы и стимулирующие средства:
    • полезные продукты питания;
    • лекарственные препараты;
    • косметические средства;
    • восстанавливающие маски;
    • процедуры в салонах (химический пилинг, аппаратные шлифовки).

    Многие продукты питания являются очень полезными и могут успешно заменить специальные лекарства для восстановления тканей или усилить их действие. Лучшие стимулирующие способности оказывают витамины группы В, С, А и Е. Эти витамины должны присутствовать в рационе каждого человека, особенно много их стоит включать в рацион с появлением первых признаков старения.

    В продукты, стимулирующие образование новых клеток, входят:
    1. Жирные сорта рыбы: лосось, скумбрия, сельдь и сардина. Эти продукты стимулируют местное кровообращение в тканях, улучшают цвет лица и делают кожу бархатистой и упругой.
    2. Кисломолочные продукты оказывают ярко выраженные стимулирующие воздействия за счет того, что содержат селен и витамин А. Сыр, творог, кефир и молоко укрепляют костную ткань и оказывают благотворное влияние на весь организм в целом.
    3. Поддерживают стимулирующие процессы в тканях на необходимом уровне крупы и цельнозерновой хлеб. Эти продукты питания выводят токсические вещества из организма, улучшают обменные процессы и способствуют очищению кишечника.
    4. Схожее действие оказывают крупы, в которых есть витамины группы В, так как они нормализуют процесс пищеварения и избавляют организм от скопившихся шлаков.
    5. Обязательно должны присутствовать в рационе такие продукты как морковь, орехи и зеленый чай. Стимулирующие свойства моркови и других овощей оранжевого цвета помогают ускорить процесс образования новых клеток и затормозить старение кожных покровов.
    6. Ускорить клеточный синтез в ранах и активизировать производство коллагена и эластина в организме поможет гранат. Получить нужные витамины и сделать кожные покровы более гладкими и упругими поможет авокадо, кислые ягоды и фрукты (смородина, грейпфрут, апельсин и киви).

    Если регенеративные процессы в организме снижены, ускорить заживление кожи лица после исчезновения прыщей или при травмах помогут стимулирующие препараты или аптечные средства. Для лечения патологий кожных покровов можно применять иммуномодуляторы, которые увеличивают процессы регенерации в несколько раз.

    Большой эффективностью обладают такие препараты:
    • левамизол;
    • тималин;
    • пирогенал.

    Хорошие стимулирующие эффекты оказывают витаминные инъекции, стероидные средства и фолиевая кислота.

    К природным восстанавливающим средствам относятся:
    • облепиховое масло;
    • масло жожоба;
    • бадяга.

    С помощью такого вещества как облепиховое масло снимается воспаление в ранах, стимулируется заживление, и восстанавливаются слизистые. Масло содержит витамины К, Е и А, поэтому считается хорошим антиоксидантом. Если нанести облепиховое масло на кожу, можно обеспечить необходимое увлажнение тканям. Для уменьшения количества холестерина и липидов в крови можно принимать масло внутрь. Заживляющим действием обладает крем бепантен, если его смешать с маслом облепихи. Достаточно взять небольшую горошинку крема и соединить с облепиховым маслом, чтобы получилось эффективное заживляющее средство.

    Масло жожоба является лучшим средством для увлажнения и питания сухой кожи лица, которое обладает регенерирующим действием. С его помощью кожа получает дополнительную защиту от действия ультрафиолета и повышается эластичность и упругость.

    С помощью такого средства как бадяга можно избавиться от прыщей, получить заживляющий эффект и активизировать кровоснабжение в тканях. Под действием мази или геля с бадягой рассасываются уплотнения под кожей и исчезают рубцовые образования.

    Аптечное средство актовегин может выпускаться в виде таблеток, мази, геля, как раствор для инъекций или крем. Препарат имеет животное происхождение и используется для стимуляции нормального кровотока, эпителизации тканей и заживления даже самых глубоких ран. Для наружного применения рекомендуется использовать мазь или крем.

    Декспантенол представляет собой эффективное средство для повышения тургора тканей и стимуляции восстанавливающих процессов. Выпускается как крем или мазь, которые содержат пантотеновую кислоту или коэнзим. Прежде чем принимать таблетки или наносить на кожу любые средства, такие как крем ил

    myhube.ru


    Смотрите также