Пенициллин под микроскопом


Пеницилл — Википедия

Пеници́лл[1][2], также пеници́ллий[3], пеници́ллиум[1] (лат. Penicillium), — род грибов-аскомицетов, относящийся к семейству Aspergillaceae порядка Эуроциевые (Eurotiales).

Один из наиболее широко распространённых в мире родов грибов, представители которого обнаруживаются в самых различных местах — в почве, на растениях, в воздухе, в помещениях, на пищевых продуктах, в морях. С эколого-трофической точки зрения, виды рода — сапротрофы и слабые паразиты растений.

Отдельные виды используются в сыроварении — Penicillium roqueforti и P. camemberti.

К роду относят продуцентов антибиотика пенициллина — среди них P. chrysogenum, являющийся одним из самых распространённых грибов в мире. Другой крайне широко распространённый вид рода — P. citrinum.

У большинства видов преобладает анаморфная гифомицетовая стадия, образующая конидиогенные клетки с цепочками конидий. Телеоморфы, как правило (и если известны), образуют жёсткие клейстотеции с восьмиспоровыми асками. Ранее к Penicillium относились исключительно анаморфные стадии грибов, в то время как телеоморфы относились к родам Eupenicillium и Talaromyces. После отмены правила раздельной номенклатуры для различных стадий жизненного цикла грибов первое из этих названий перешло в синонимику Penicillium, а ко второму роду стали относить также ряд родственных видов, известных только по анаморфной стадии и ранее включаемых в Penicillium. К 2018 году в роде описано свыше 350 признанных видов.

Основы систематики рода заложили в 1930—1940-х годах американские микологи-микробиологи Чарлз Том и Кеннет Рэйпер. В разработанной ими системе разделение рода на секции базируется на сложности строения конидиеносцев — так называемой ярусности кисточек с конидиями. Этот подход использовался и в более поздних системах классификации, поскольку оказывается удобным для определения видов по морфологическим признакам. Молекулярно-филогенетические исследования рубежа XX—XXI веков, однако, показали, что этот признак в сравнительно редких случаях коррелирует с эволюционным родством видов.

Характеристика колоний и микроморфология[править | править код]

Вегетативный мицелий обильный, полностью погружённый в агар или хотя бы частично возвышающийся над ним, формирует густые плотные колонии. Гифы неправильно ветвящиеся, септированные, обычно неокрашенные[4].

Условно выделяются четыре типа колоний пенициллов по макроморфологии. По Рэйперу и Тому, у бархатистых (англ. velvety, velutinous) колоний все или почти все вегетативные гифы погружены в субстрат; конидиеносцы густой однородной массой отходят от поверхности субстрата, придавая колониям бархатисто-зернистый облик. Войлочные (англ. lanose), или шерстистые (floccose), колонии характеризуются наличием развитого воздушного вегетативного мицелия, во время роста колоний образующего стерильный, как правило, белый край; конидиеносцы представляют собой ответвления от стерильных воздушных гиф. Колонии с мицелиальными тяжами (англ. funiculose) имеют воздушный мицелий, состоящий из сплетений гиф, как правило, восходящих над субстратом; конидиеносцы отходят от этих сплетений, также от отдельных стерильных гиф. Пучковатые (англ. fasciculate) колонии характеризуются аггрегированием простых конидиеносцев в пучки, создающим видимость крупной зернистости колонии; колонии с коремиями (coremiform) — крайний случай пучковатости, для которого характерны крупные пучки конидиеносцев с общей споровой массой, приподнятой на стерильной ножке[3][5].

Конидиеносцы образуются на недифференцированных гифах субстратного, поверхностного или воздушного мицелия, 2—5 мкм толщиной, тонкостенные, у некоторых видов с верхушечным вздутием, обычно гиалиновые, редко коричневые. Конидиеносцы септированные, на конце несут так называемую кисточку (лат. penicillus) — мутовку фиалид (одноярусная кисточка) или мутовку метул, несущих по мутовке конидиогенных клеток каждая (двухъярусная кисточка). Сам конидиеносец может дополнительно ветвиться, в результате образуются трёх- и четырёхъярусные (иногда и с большим числом ярусов) кисточки. У некоторых видов конидиеносцы заканчиваются одиночными конидиогенными клетками. Конидиогенные клетки — фиалиды (иногда называемые стеригмами) — фляговидные, обычно не превышают 15 мкм в длину. Конидии (фиалоконидии) одноклеточные, у большинства видов 2—5 мкм в наибольшем измерении, образуются базипетально на суженных в шейку верхушках фиалид. Цепочки конидий могут быстро распадаться либо длительное время сохраняться, также могут переплетаться между собой либо оставаться параллельными, образуя колонки. Конидии в массе различных оттенков зелёного, реже белые, коричневые, оливковые[4].

Некоторые виды образуют склероции в виде жёстких сплетений толстостенных гиф, представляющие собой недоразвитые клейстотеции[6].

Плодовые тела известны у сравнительно небольшого числа (около 40) видов, представляют собой видимые невооружённым глазом (100—500 мкм в диаметре) клейстотеции, шаровидные или почти шаровидные до удлинённых или неправильных, очень жёсткие, сохраняющиеся таковыми в течение недель и даже месяцев. Созревают от центра к периферии. Окраска плодовых тел белая, жёлтая, оранжевая, коричневая, редко чёрная или красная. Аски унитуникатные, обычно с 8 спорами, почти шаровидные до эллипсоидальных или грушевидных, 5—15 мкм длиной. Аскоспоры одноклеточные, широкоэллипсоидальные, линзовидные или (почти) шаровидные, 2—5 мкм в диаметре, гладкие или шероховатые, с неглубокой экваториальной бороздой или с двумя в той или иной степени выраженными параллельными экваториальными гребнями[3][4][6][7]. Отличное от других видов строение телеоморфы характерно для Penicillium eremophilum (анаморфа у этого вида неизвестна): аски у этого вида двуспоровые, клейстотеции тонкостенные[8][9].

Известны гомоталличные и гетероталличные виды, в геноме их гаплоидных клеток содержится один или два соответственно аллеля локуса MAT — MAT1-1 и (или) MAT1-2, — определяющих типы спаривания[10][11].

Расчётный размер генома у разных видов рода варьирует в довольно широких пределах — от 25 до 36 Мб. Отмечается, что Penicillium digitatum, способный поражать только плоды цитрусовых, обладает самым маленьким геномом из слабо фитопатогенных видов — 25,7 Мб. Геном патогена плодов косточковых и семечковых культур P. expansum — наибольший среди потенциальных фитопатогенов, около 31 Мб. Наиболее крупные геномы в целом — у P. camemberti и P. commune[10].

Культивирование на питательных средах[править | править код]

В качестве стандартных сред для изучения морфологии пенициллов на чашках Петри приняты агар Чапека с дрожжевым экстрактом (Czapek Yeast Extract Agar, CYA) и агар с солодовым экстрактом[de] (Malt Extract Agar, MEA). В отдельных исследованиях также используются среда Чапека[en] (Czapek Agar, CZA), овсяный агар (Oatmeal Agar, OA), креатиново-сахарозный агар (Creatine Sucrose Agar, CREA), агар с дрожжевым экстрактом и сахарозой (Yeast Extract Sucrose Agar, YES), дихлоран-глицериновый агар[de] (Dichloran 18 % Glycerol agar, DG18), агар с солодовым экстрактом в модификации Блексли, CYA с 5 % поваренной соли (CYAS) и другие[12].

Агаризованная среда Чапека использовалась в качестве основной для описания пенициллов в работах Рэйпера и Тома (1949), Пидопличко (1972), Рамиреса (1982). YES используется для определения характеристик, связанных со вторичными метаболитами грибов. Овсяный агар наиболее эффективен для стимулирования полового размножения у пенициллов. Изменение цвета среды под колониями на CREA, связанное с выделением кислот и оснований (и вообще способность или неспособность расти на этой среде, где в качестве источника азота используется креатин), помогает различить некоторые близкородственные виды. DG18 и CYAS позволяют характеризовать рост грибов при пониженной доступности воды[12].

Для развития нормальной окраски спороношения в питательных средах необходимо наличие следовых количеств сульфата цинка и сульфата меди[12].

Морфологически сходные группы грибов[править | править код]

Кисточковидно разветвлённые конидиеносцы с фиалидами, образующими конидии в базипетальных цепочках, характерны для целого ряда анаморф. Эти роды фенотипически отличимы от Penicillium по характеру ветвления конидиеносцев, форме фиалид, строению плодовых тел телеоморфы, окраске колоний.

Так, анаморфы грибов, относимых к роду Hamigera, образуют фляговидные или цилиндрические фиалиды, часто расположенные на конидиеносцах неправильно, и конидии, в массе окрашенные в коричневые тона; телеоморфы представлены мягкими аскомами из рыхлопереплетённых гиф[13].

Анаморфы Talaromyces отличаются от анаморф Penicillium обычно симметричными двухъярусными кисточками с ланцетными фиалидами; окраска спороношения часто более тёмных зелёных тонов, чем у Penicillium. Телеоморфы этого рода образуют мягкие плодовые тела из переплетённых гиф[13].

У Rasamsonia кисточки двухъярусные и трёхъярусные, с цилиндрическими фиалидами, суженными к обоим концам; конидии в массе коричневые. Плодовые тела мягкие, с тонкими стенками. Виды этого рода часто являются термофильными[13].

Sagenomella с белым, серым, зеленоватым, коричневым конидиальным спороношением, неправильно расположенными, лишь иногда собранными в мутовки, ланцетными фиалидами. Плодовые тела также мягкие, тонкостенные[13].

Trichocoma paradoxa образует двухъярусные и трехъярусные кисточки с цилиндрическими, суженными к обоим концам фиалидами, конидиальное спороношение в коричневых тонах. Плодовые тела мягкие, крупные, до 2 см в диаметре[13].

В роде Paecilomyces конидиальное спороношение в коричневых тонах, конидиеносцы неправильно мутовчато разветвлённые, фиалиды с широким основанием и длинной узкой шейкой. Плодовые тела практически не оформленные[13].

К Thermomyces относят грибы, у которых анаморфа образует одноярусные и двухъярусные кисточки либо одиночными хламидоспороподобными конидиями. Окраска спороношения зелёная. Термофилы, образующие жёсткие клейстотеции[13].

Спороносящий пеницилл на плоде мандарина

Большинство видов — исконно почвенные сапротрофы, меньшая доля — оппортунистические паразиты растений, поражающие ослабленные всходы и длительно хранящиеся плоды растений. Встречаются и на прочих органических субстратах, пищевых продуктах[3][6].

В качестве наиболее распространённых видов рода указываются Penicillium chrysogenum, P. citrinum, P. digitatum, P. griseofulvum и P. hirsutum[14].

Отмечается, что пенициллы, как правило, составляют до 67 % преобладающих видов грибов во всех биогеоценозах с естественной растительностью (при этом общее разнообразие достигает 50—75 и более видов в 1 г почвы). Разнообразие пенициллов максимальное в почвах пустошей и пойменных лесов и минимально в почвах пустынь и тундр. Многие виды рода распространены повсеместно, однако часто выделяются только из определённых групп биогеоценозов. Так, Penicillium restrictum — стабильный индикатор почв травянистых сообществ по всему миру, P. montanense и P. lagena обычны в хвойных и хвойно-широколиственных лесах[15]

Некоторые виды способны развиваться при pH = 1,5—3, многие виды — при pH = 9—10 и выше. Penicillium roqueforti может медленно расти при концентрации кислорода 0,5 %. P. expansum нормально растёт при 2 % O2. Большинство видов, однако, требует более высоких концентраций кислорода. Ряд видов рода — умеренные ксерофилы, большинство видов растут при aw = 0,82, некоторые виды — и при aw = 0,78, P. eremophilum — облигатный ксерофил, не развивающийся при aw больше 0,90[8]. Большинство видов способны развиваться при температуре ниже 5 °C, некоторые — при 0 °C[16]. Описано несколько видов, относящихся к категории психротолерантов: в частности, Penicillium jamesonlandense и P. ribium. P. jamesonlandense плохо растёт при 25 °C, его температурный оптимум — 17—18 °C[14].

Порча пищевых продуктов[править | править код]

Спороношение пеницилла на плоде апельсина

Пенициллы — весьма обыкновенные плесневые грибы, встречающиеся на разнообразных пищевых продуктах. Как правило, виды этого рода вызывают менее существенные поражения пищевых продуктов, чем виды аспергилла. Многие виды рода — почвенные обитатели, попадающие на пищевые продукты только в качестве загрязнителей. Для других видов пищевые продукты являются наиболее обычным субстратом для развития. Пенициллы, встречающиеся на пищевых продуктах, разделяются на три группы: встречающиеся на свежей пище, наиболее часто — на плодах растений; поражающие зерно после уборки и во время высушивания; и встречающиеся на переработанных продуктах питания[17].

Представители рода — наиболее часто встречающиеся плесени, поражающие плоды яблони, груши, цитрусовых. На яблоках и грушах нередко поселяется Penicillium expansum, вызывающий широко распространяющуюся гниль коричневого цвета. Этот вид обнаруживается также на плодах земляники, томата, винограда, авокадо, манго. Выделяет токсин патулин. P. solitum встречается на яблоках и грушах, однако более редок. P. digitatum часто поражает плоды апельсина, реже — других цитрусовых, образуя гниль коричневого цвета. На лимонах наиболее часто встречается P. italicum, образующий голубое или голубовато-зелёное спороношение на плодах. Близкий вид P. ulaiense также встречается на плодах апельсина и лимона[17].

Penicillium brevicompactum — неспецифичный слабый патоген, иногда вызывающий гниение яблок, винограда, грибов, маниока, картофеля. Выделяет токсин микофеноловую кислоту. P. aurantiogriseum и близкие виды выделяются с разнообразных свежих растительных продуктов, синтезируют слабые токсины пеницилловую кислоту, рокфортин C, веррукозидин. Поражения чеснока вызывает вид P. allii. P. oxalicum, выделяющий секалоновую кислоту D, известен как патоген ямса и маниока[17].

Penicillium verrucosum, выделяющий охратоксин А, — наиболее экономически значимый грибок среди представителей рода в Европе, поражает зерновые культуры. В Японии на зёрнах риса изредка встречается P. citreonigrum, выделяющий цитреовиридин[17].

Порчу сыра наиболее часто вызывает Penicillium commune, представляющий собой естественную форму используемого в сыроделии вида P. camemberti. Также на сырах, производимых без использования этого вида, в качестве агента порчи может появляться P. roqueforti. Реже на сыре встречаются P. brevicompactum, P. chrysogenum, P. glabrum, P. expansum, P. solitum, P. verrucosum, P. viridicatum[17].

На маргарине и различных вареньях иногда встречается вид Penicillium corylophilum[17].

Токсичные метаболиты[править | править код]

Впервые токсичность гриба, достоверно относящегося к пенициллам, была задокументирована в 1913 году, когда Карл Олсберг и Отис Блэк наблюдали токсическое действие экстракта Penicillium puberulum (штамм NRRL 1889, использованный ими, относится к P. cyclopium[18]), выделенного с заплесневелых початков кукурузы, на животных при введении в количествах 200—300 мг на кг массы[19].

В обзоре 1981 года 85 видов рода (включая Talaromyces) указывались как продуценты токсичных веществ. Несомненно, многие из сообщений, на которых основан этот обзор, связаны с ошибочным определением видов. В 1991 году были обобщены сведения о 27 токсичных метаболитах, продуцируемых пенициллами. Из них 17 были названы потенциально опасными токсинами грибов, встречающихся на пищевых продуктах (2006)[19].

В 2007 году Джон Питт перечислил 9 микотоксинов, продуцируемых пенициллами, наиболее потенциально опасных для человека[19]:

Название токсина Токсичность (испытуемое животное, ЛД50, способ введения) Продуценты
Цитреовиридин мыши, 7,5 мг/кг, внутрибрюшинно
мыши, 20 мг/кг, перорально
Penicillium citreonigrum
Penicillium ochrosalmoneum
Цитринин мыши, 35 мг/кг, внутрибрюшинно
мыши, 110 мг/кг, перорально
Penicillium citrinum
Penicillium expansum
Penicillium verrucosum
Циклопиазоновая кислота крысы, 2,3 мг/кг, внутрибрюшинно
крысы-самцы, 36 мг/кг, перорально
крысы-самки, 63 мг/кг, перорально
Penicillium camemberti
Penicillium commune
Penicillium chrysogenum
Penicillium griseofulvum
Penicillium hirsutum
Penicillium viridicatum
Охратоксин А молодые крысы, 22 мг/кг, перорально Penicillium verrucosum
Патулин мыши, 5 мг/кг, внутрибрюшинно
мыши, 35 мг/кг, перорально
Penicillium expansum
Penicillium griseofulvum
Penicillium roqueforti
Penicillium vulpinum
Пенитрем A[en] мыши, 1 мг/кг, внутрибрюшинно Penicillium crustosum
Penicillium glandicola
PR-токсин мыши, 6 мг/кг, внутрибрюшинно
крысы, 115 мг/кг, перорально
Penicillium roqueforti
Рокфортин C мыши, 340 мг/кг, внутрибрюшинно Penicillium chrysogenum
Penicillium crustosum
Penicillium roqueforti
Секалоновая кислота D[en] мыши, 42 мг/кг, внутрибрюшинно Penicillium oxalicum

Наиболее известным и опасным токсином, продуцируемом видом рода, Питт назвал охратоксин А. Относится к категории 2B веществ, вероятно канцерогенных для человека, согласно классификации Международного агентства по изучению рака. Токсин действует на почки, возможно, связан с возникновением очагов балканской нефропатии[en]. Первоначально вещество было выделено из культуры Aspergillus ochraceus, затем было показано, что его часто продуцируют штаммы A. carbonarius и редко — A. niger. Впоследствии обнаружено, что это вещество синтезируют Penicillium verrucosum и близкий вид P. nordicum. P. verrucosum встречается на растениях ячменя и пшеницы в умеренных регионах мира — в Скандинавии, Центральной Европе, Западной Канаде. В 1986 году опубликовано исследование образцов ячменя из Дании с ферм, на которых свиньи страдали заболеванием почек. Из 70 образцов в 67 было обнаружено множество грибов P. verrucosum, из 66 образцов был выделен охратоксин А[19].

По-видимому, с зерном риса, поражённым Penicillium citreonigrum, связано широкое распространение острой формы бери-бери в Японии во второй половине XIX века. С 1910 года это заболевание стало встречаться во много раз реже, что совпало с введением жёсткой государственной инспекции рисового зерна, значительно снизившей продажу заплесневелого риса. Впоследствии поражённый P. citreonigrum рис в Юго-Восточной Азии обнаруживался редко[19].

PR-токсин и рокфортин C синтезируются штаммами Penicillium roqueforti, используемого в сыроделии. Показана связь рокфортина C с гибелью собак в Канаде. Сильно ядовитый PR-токсин быстро разлагается при хранении сыра, а токсин с достаточно большой летальной дозой 50 % рокфортин C обнаруживается и в готовых сырах. Об отравлениях человека PR-токсином или рокфортином C, связанных с употреблением в пищу сыра, не известно[19].

Использование в пищевой промышленности[править | править код]

Два вида рода часто используются в сыроделии. Для приготовления голубых сыров (рокфора, стилтона, горгондзолы, блё д'Овернь, кабралеса, данаблю и других) используется культура Penicillium roqueforti. Этот вид наиболее устойчив к продуктам молочнокислого брожения, однако способен развиваться только при небольшой концентрации поваренной соли. Грибок заселяется в отверстия в сыре, создаваемые с помощью металлических штырей, через 2—3 недели начинает интенсивно спороносить, предавая сыру сине-зелёную окраску (иногда сине-зелёный пигмент выделяется и мицелием гриба)[20].

При производстве белых сыров с плесенью (камамбер, бри, гамалуст) после первичной ферментации молочнокислыми бактериями внутри сыра начинается развитие дрожжевых грибов, а на поверхность сыра заселяется грибок P. camemberti[20].

Салями и другие сухие колбасы в ряде стран Европы (Италии, Румынии, Венгрии, Швейцарии, Испании, Франции) обычно подвергаются ферментации грибом Penicillium nalgiovense, реже — P. chrysogenum и описанным в 2015 году P. salamii[21]. Эти виды — одни из наиболее солеустойчивых плесневых грибов, их рост обычно препятствует появлению нежелательных плесневых грибков на ферментированных колбасах. P. nalgiovense выделяет протеолитические и липолитические ферменты, способствующие улучшению консистенции колбас, а образующийся при разложении белка аммиак дополняет аромат и снижает кислотность продукта[20].

Использование для производства ферментов[править | править код]

Целый ряд штаммов пенициллов используется в промышленности для синтеза ферментов. Так целлюлазы некоторых штаммов-мутантов оказываются сравнимыми по эффективности со штаммами наиболее активно используемого в промышленности вида Trichoderma reesei. Увеличенным производством целлюлаз характеризуются отдельные штаммы Penicillium brasilianum, P. brevicompactum, P. citrinum, P. chrysogenum, P. crustosum, P. echinulatum, P. expansum, P. glabrum, P. janthinellum, P. oxalicum, P. persicinum[22]. Ряд штаммов, выделяющих внекеточные хитиназы, (например, штамм вида P. ochrochloron) может использоваться для биологического контроля и производства грибных протопластов[23].

Использование в медицине[править | править код]

Структурная формула пенициллина G

Среди видов рода известно множество продуцентов природных лекарственных препаратов, в том числе антибиотиков. Свойство зелёных плесеней подавлять бактериальный рост было впервые отмечено в 1868—1872 годах В. А. Манассеиным и А. Г. Полотебновым[2]. Первый известный науке бактерицидный антибиотик, активность которого была продемонстрирована Александром Флемингом в 1928 году, — пенициллин, продуцируется пенициллами, относящимися к секции Chrysogena. Технология очистки и промышленного производства пенициллина была разработана группой под руководством Х. Флори и Э. Чейна в 1941 году. В СССР пенициллин был выделен в 1942 году З. В. Ермольевой[2]. Вещества группы пенициллинов обладают активностью по отношению к грамотрицательным и многим грамположительным бактериям, ингибируя синтез клеточной стенки[24]. В 2011 году штамм, с которым работал Флеминг, в связи с пересмотром систематики этой группы пенициллов на основании полифазного подхода, был отнесён к виду Penicillium rubens, хотя ранее причислялся P. chrysogenum (P. notatum)[25].

Структурная формула гризеофульвина

Гризеофульвин[en] был впервые выделен из мицелия штамма Penicillium griseofulvum А. Оксфордом, Х. Райстриком и П. Симонартом в 1938 году. Исследователи охарактеризовали этот метаболит пеницилла с химической точки зрения, описали несколько его производных. В 1946 году П. Брайен, П. Кёртис и Х. Хемминг описали нарушения роста гиф фитопатогена Botrytis allii под действием некоего «фактора искривления», вырабатываемого культурами Penicillium janczewskii. Годом позднее Дж. Гроув и Дж. Макгоуэн показали, что «фактор искривления» идентичен описанному ранее гризеофульвину. В 1958 году Дж. Джентлз в экспериментах с морскими свинками продемонстрировал эффективность гризеофульвина против грибов-дерматофитов. Гризеофульвин обладает неспецифичным фунгистатическим действием[20][26].

Структурная формула микофеноловой кислоты

В 1893—1896 годах итальянский врач Бартоломео Госио[en] выделил с заплесневелых зёрен кукурузы грибок Penicillium brevicompactum (назвав его P. glaucum) и продемонстрировал подавление развития Bacillus anthracis неизвестным метаболитом этого грибка. В 1913 году Олсберг и Блэк повторно получили это вещество из культуры штамма, определённого как P. stoloniferum, и назвали его микофеноловой кислотой[en]. Микофеноловая кислота — первое антибиотическое вещество грибкового происхождения, полученное в кристаллическом виде. Обладает антибактериальным, противогрибковым, противовирусным, противоопухолевым, противопсориазным, иммунодепрессантным действием, однако распространения в качестве антибиотика не получила, поскольку токсична. 2-Морфолиноэтиловый эфир микофеноловой кислоты (более легко усвояемое пролекарство, в организме гидролизующееся до микофеноловой кислоты) используется в качестве иммунодепрессанта при пересадке почек, сердца, печени. Это вещество также выделяется видом P. echinulatum[20][27].

Мевастатин[en] — первый известный науке статин. Получен в 1973 году в качестве метаболита Penicillium citrinum японским фармакологом Акиро Эндо. В 1976 году А. Браун выделил это же вещество из культуры P. brevicompactum, назвав его компактином. Эндо показал эффективность мевастатина в экспериментах с курицами, собаками и обезянами. Акира Ямамото из Осакского университета успешно применял небольшие дозы мевастатина для лечения пациентов с семейной гиперхолестеринемией, однако дальнейшего распространения препарат не нашёл: в 1980-х годах было показано, что при долговременном применении вещества у собак развивалась опухоль кишечника[28].

Исторические сведения, таксономия и систематика[прав

ru.wikipedia.org

Гриб пеницилл: строение, свойства, применение

Плесневый гриб пеницилл – это растение, получившее широкое распространение в природе. Относится оно к классу несовершенных. На данный момент насчитывается более 250 его разновидностей. Золотистый пиницилл, по-другому кистевидная зеленая плесень, имеет особое значение. Данная разновидность применяется для изготовления лекарственного средства. «Пенициллин» на основе данного грибка позволяет побороть множество бактерий.

Среда обитания

Пеницилл – многоклеточный гриб, для которого почва является естественной средой обитания. Очень часто это растение можно увидеть в виде голубого либо зеленого налета плесени. Произрастает он на всевозможных субстратах. Однако чаще всего встречается на поверхности растительных смесей.

Строение гриба

Что касается строения, то гриб пеницилл очень похож на аспергилл, который также относится к семейству плесневелых грибов. Вегетативный мицелий данного растения прозрачный и ветвящийся. Состоит он, как правило, из большого числа клеток. От мукора гриб пеницилл отличается грибницей. У него она многоклеточная. Что касается мицелия мукора, то он одноклеточный.

Грифы пеницилла либо располагаются на поверхности субстрата, либо проникают внутрь его. От этой части гриба отходят приподнимающиеся и прямостоячие конидиеносцы. Подобные образования, как правило, в верхнем отделе ветвятся и формируют кисточки, которые несут окрашенные одноклеточные поры. Это конидии. Кисточки растения, в свою очередь, могут быть нескольких видов:

  • несимметричные;
  • трехъярусные;
  • двухъярусные;
  • одноярусные.

Определенный вид пеницилла образует из конидий пучки, которые называются коремии. Размножение грибка осуществляется путем распространения спор.

Почему это паразит

Грибы-паразиты (пеницилл и мукор) провоцируют порчу продуктов, а также принимают активное участие в разложении тканей, имеющих животное и растительное происхождение. Осуществляется это благодаря большому количеству ферментов. Стоит отметить, что налет плесени на растительном субстрате может образовываться одновременно несколькими разновидностями грибка. При этом питание данного вида растений осуществляется путем всасывания готовых органических компонентов. Именно по этой причине пеницилл считается паразитом.

Наносится ли вред человеку

Многие считают, что грибы пенициллы – бактерии. Однако это далеко не так. Некоторые разновидности данного растения обладают патогенными свойствами относительно животных организмов и человека. Больше всего вреда наносится в тех случаях, когда плесневый грибок поражает сельскохозяйственные и пищевые продукты, интенсивно размножаясь внутри них. При неправильном хранении пеницилл поражает корма. Если его скормить животным, то не исключена их гибель. Ведь внутри такого корма скапливается большое количество токсических веществ, которые негативным образом сказываются на состоянии здоровья.

Применение в фармацевтической промышленности

Может ли быть полезным гриб пеницилл? Бактерии, вызывающие определенные вирусные заболевания, неустойчивы к антибиотику, который изготавливают из плесени. Некоторые разновидности этих растений получили широкое распространение в пищевой и фармацевтической промышленности благодаря их способности продуцировать ферменты. Препарат «Пенициллин», который борется со многими видами бактерий, получают из Penicillium notatum и Penicillium chrysogenum.

Стоит отметить, что изготовление этого лекарственного средства происходит в несколько этапов. Для начала грибок выращивается. Для этого используется кукурузный экстракт. Это вещество позволяет получить лучшую продукцию пенициллина. После этого грибок выращивается путем погружения культуры в специальный ферментатор. Его объем составляет несколько тысяч литров. Там растения активно размножаются.

После извлечения из жидкой среды гриб пеницилл проходит дополнительную обработку. На данном этапе производства применяются растворы солей и органические растворители. Подобные вещества позволяют получить конечные продукты: калиевую и натриевую соль пенициллина.

Плесневые грибы и пищевая промышленность

Благодаря некоторым свойствам гриб пеницилл широко применяется в пищевой промышленности. Определенные разновидности этого растения используются в сыроварении. Как правило, это Penicillium Roquefort и Penicillium camemberti. Данные виды плесени применяются при изготовлении таких сыров, как «Стилтош», «Горнцгола», «Рокфор» и так далее. Данная «мраморная» продукция обладает рыхлой структурой. Для сыров этой разновидности характерен специфический аромат и внешний вид.

Стоит отметить, что культура пенициллов используется на определенном этапе изготовления подобной продукции. Например, для получения сыра «Рокфор» применяется штамм плесени Penicillium Roquefort. Этот вид грибка может размножаться даже в рыхло спрессованной творожной массе. Эта плесень прекрасно переносит низкую концентрацию кислорода. Помимо этого, гриб устойчив к повышенному содержанию в кислой среде солей.

Пеницилл способен выделять липолитические и протеолитические ферменты, которые влияют на молочные жиры и белки. Под влиянием данных веществ сыр приобретает рыхлость, маслянистость, а также специфический аромат и вкус.

В завершение

Свойства гриба пеницилла полностью еще не изучены. Ученые регулярно проводят новые исследования. Это позволяет выявить новые свойства плесени. Подобные работы позволяют изучить продукты обмена веществ. В будущем это позволит применять гриб пеницилл на практике.

fb.ru

Penicillium rubens — Википедия

Материал из Википедии — свободной энциклопедии

Penicillium rubens

промежуточные ранги

Вид:Penicillium rubens

Penicillium rubens Biourge, 1923

Penicíllium rúbens (лат.) — вид несовершенных грибов (телеоморфная стадия неизвестна), относящийся к роду Пеницилл (Penicillium).

Включает активных продуцентов антибиотика пенициллина, в том числе штамм Флеминга. Морфологически неотличим от Penicillium chrysogenum.

Морфологические отличия от Penicillium chrysogenum не установлены.

Наряду с P. chrysogenum P. rubens образует обильно спороносящие на агаре с дрожжевым экстрактом и сахарозой (YES) колонии, плохо или удовлетворительно растущие колонии на креатиновом агаре (CREA), выделяющие незначительные количества кислот в среду. Также оба вида на CYA и/или MEA образуют колонии с крупными каплями ярко-жёлтого экссудата.

Некоторые штаммы несколько отличаются морфологически от основной массы: NRRL 792 (культура типового штамма P. rubens) и CBS 307.48 менее интенсивно спороносят на большинстве сред.

Фенотипические отличия между видами проявляются в наборах продуцируемых ими метаболитов. Оба вида продуцируют рокфортин C, мелеагрин, многие штаммы — сорбициллины, пенициллин и хризогин. Только P. chrysogenum выделяет андрастины, секалоновые кислоты, вещества, близкие лумпидину.

Штамм, выделенный Александром Флемингом и описанный им в 1929 году как продуцент пенициллина (известен как «штамм Флеминга», CBS 205.57 = NRRL 824 = IMI 015378), относится к этому виду. Также к этому виду относятся другие исторически значимые штаммы продуцентов пенициллина: CBS 197.46 = NRRL 832, впервые использованный для производства пенициллина в жидкой культуре, так называемый «Висконсинский штамм» NRRL 1951, давший начало серии культур, наиболее активно вырабатывающих пенициллин. Геном одной из дочерних культур NRRL 1951 был в 2009 году полностью секвенирован.

Penicillium rubens Biourge, La Cellule 33: 265 (1923).

В качестве лектотипа был выбран образец культуры CBS H-20595 = NRRL 792 = IBT 30129 = ATCC 9783 = CBS 129667 штамма, первоначально выделенного Филибером Бьюржем и в 1930 году отправленного им Чарлзу Тому.

Синонимы[править | править код]

  • Houbraken J., Frisvad J. C., Samson R. A. Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens // IMA Fungus. — 2011. — Vol. 2(1). — P. 87—95. — doi:10.5598/imafungus.2011.02.01.12.

ru.wikipedia.org

Пеницилл золотистый — Википедия

Материал из Википедии — свободной энциклопедии

Пеницилл золотистый

промежуточные ранги

Вид:Пеницилл золотистый

Penicillium chrysogenum Thom, 1910, nom. cons.

Пеници́лл (пеници́ллий) золоти́стый (лат. Penicíllium chrysógenum) — вид несовершенных грибов (телеоморфная стадия неизвестна), относящийся к роду Пеницилл (Penicillium).

Один из наиболее распространённых видов рода. Продуцент пенициллина.

Определяется по быстро растущим сине-зеленоватым колониям с золотисто-жёлтым экссудатом, золотисто-жёлтому реверсу колоний и золотисто-жёлтому же продуцируемому растворимому пигменту.

Колонии на агаре Чапека (англ.)русск. быстрорастущие, бархатистые, реже пучковатые, с белым мицелием. Спороношение среднее до обильного, сине-зелёное до тёмно-зелёного. Капли экссудата иногда довольно обильные, золотисто-жёлтые. Водорастворимый пигмент, выделяемый в среду, и реверс колоний также золотисто-жёлтые. Запах обычно имеется, фруктовый.

Колонии на агаре с экстрактом солода быстрорастущие, часто без экссудата.

Конидиеносцы в основном трёхъярусные, также нередко двух- и четырёхъярусные, тонкие, гладкостенные, 200—500 мкм длиной. Метулы цилиндрические, гладкостенные, расходящиеся, реже в сжатых пучках, 8—12×2—2,5 мкм. Фиалиды в сжатых пучках по 4—6, цилиндрически-фляговидные, 7—10×2—2,5 мкм. Конидии эллиптические до почти шаровидных, затем шаровидные, гладкостенные (в электронном сканирующем микроскопе мелкобугорчатые), 2,5—3,5 мкм в диаметре.

Близкие виды[править | править код]

Морфологически от пеницилла золотистого практически неотличим Penicillium rubens Biourge. Отличается физиологически: пеницилл золотистый синтезирует секалоновые кислоты D и F и (или) вещество, близкое лумпидину. Penicillium rubens этих веществ не синтезирует.

Penicillium flavigenum отличается несколько более мелкими и более вытянутыми конидиями, меньшей скоростью роста на CYAS и насыщенно-жёлтым реверсом на YES (у Penicillium chrysogenum реверс лимонно-жёлтый).

Весьма распространённый гриб, встречающийся в самых разнообразных местах по всему миру.

Один из наиболее ксерофильных видов рода: конидии начинают прорастать при aw = 0,78.

Продуцент рокфортинов C и D, пенициллинов F и G, мелеагрина, хризогина.

  • Penicillium brunneorubrum Dierckx, 1901, nom. rej.
  • Penicillium chlorophaeum Biourge, 1923
  • Penicillium citreoroseum Dierckx, 1901, nom. rej.
  • Penicillium cyaneofulvum Biourge, 1923
  • Penicillium griseoroseum Dierckx, 1901, nom. rej.
  • Penicillium harmonense Baghd., 1968
  • Penicillium notatum Westling, 1911
  • Penicillium roseocitreum Biourge, 1923
  • Frisvad J., Samson R. A. Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins // Studies in Mycology. — 2004. — Vol. 49. — P. 74.
  • Kozakiewicz Z. Penicillium chrysogenum // IMI Descriptions of Fungi and Bacteria. — 1995. — Vol. 1257. — P. 1—2.
  • Samson R. A., Hoekstra E. S., Frisvad J. C. Introduction to food- and airborne fungi. — 2004. — P. 194.

ru.wikipedia.org

Пеницилл под микроскопом - фото - структура

Вернуться к списку Задать свой вопрос

 

 

Микология, как научный раздел о грибном таксоне, зародилась еще в античные времена. И сегодня мы расскажем об одном представителе, чье название переводится как «кисть» благодаря ярко выраженному визуальному сходству с ней. Но наблюдая пеницилл под микроскопом несложно заметить все характерные признаки эукориотического строения их клеток, а также спорангий и ветвящиеся мицелии.

Пеницилл классифицируется в биологической системе как род грибов семейства «трикохомовые». Впервые ниша в систематической иерархии определена в середине 20-го века ученым микологом Чарлзом Томом (работа «Manual of the Penicillia» издана в 1949 году). Основная доля видов считается редуцентами, т.к. обеспечивают превращение останков организмов в органические и неорганические химические соединения. По сути незаменимы в биосистеме, ибо замыкают биотический круг, состоящий из живых существ и среды обитания.

Другая родовая часть – паразиты, поражающие плоды или клубни культурных растений, находящихся на длительном хранении в местах с повышенной влажностью. Т.е. это плесень, наблюдаемая на лежалых помидорах, побегах зелени, фруктах и даже орехах. Будучи постоянными обитателями поверхностных почвенных слоев, они переносятся на поверхность овоща, загрязняя ее и получая одновременно благоприятный субстрат. В результате можно увидеть обширные и непрерывно разрастающиеся плесневые зоны или даже коричневатую гниль (как у яблок и груш).

Являясь пищевыми загрязнителями, при метаболизме выделяют токсичные вещества (например, «Охратоксин А»), представляющие серьезную опасность для животных, птиц и человека, существенно снижая иммунитет и вызывая отравление. Однако, развитие науки и медицины позволило использовать пеницилл для изготовления медицинских лекарственных препаратов природного и полусинтетического происхождения. Это знаменитые антибиотики, позволяющие эффективно бороться с вирусами и предотвращающими рецидив множества опасных заболеваний.   

Перед началом микроскопирования их следует культивировать в питательной среде. Для этого используется лабораторная посуда – прозрачная стеклянная чашка Петри диаметром до 100 миллиметров.  В ней, в дрожжевом агаре, происходит посев исследуемой культуры. Для повышения темпов разрастания и максимальной активации этих процессов можно задействовать также добавки из глицерина, сахара, поваренной соли.

Изучая пеницилл под микроскопом запомните главные правила:

Для просмотра подготавливается временный микропрепарат. Взятый пинцетом или иглой образец укладывается между покровным и предметным стеклами, склеиваемыми капелькой воды;

Применяемая методика исследования – проходящий свет в светлом поле. У вас должна быть биологическая модель с нижней подсветкой, тремя или четырьмя объективами и одним широкоугольным окуляром 10x или 16x;

Увеличение наращиваться постепенно - от меньшего к большему. Если сразу выставить самую высокую кратность, могут возникнуть проблемы с фокусировкой и настройкой резкости.

Если желаете сделать микрофотографии, подключите в окулярную трубку цифровую камеру USB (иногда входит в комплект, но чаще приобретается отдельно как дополнительный аксессуар).

Рекомендуем следующие монокулярные инструменты: Микромед Р-1, Levenhuk 320, Биомед 2.

Чтобы воспользоваться расширенной консультацией позвоните нашим менеджерам или спросите по электронной почте.

 

 

oktanta.ru

Спасительная плесень: история создания пенициллина | Здоровая жизнь | Здоровье

«Когда я проснулся на рассвете 28 сентября 1928 года, я, конечно, не планировал революцию в медицине своим открытием первого в мире антибиотика или бактерии-убийцы», — эту запись в дневнике сделал Александр Флеминг, человек, который изобрёл пенициллин.

Идея использовать микробов в борьбе с микробами появилась ещё в XIX веке. Учёным уже тогда было ясно, что чтобы бороться с раневыми осложнениями, надо научиться парализовать микробов, вызывающих эти осложнения, и что убить микроорганизмы можно с их же помощью. В частности, Луи Пастер открыл, что бациллы сибирской язвы погибают под действием некоторых других микробов. В 1897 году Эрнест Дучесне использовал плесень, то есть свойства пенициллина, для лечения тифа у морских свинок.

Фактически датой изобретения первого антибиотика является 3 сентября 1928 года. К этому времени Флеминг уже был известен и имел репутацию блестящего исследователя, он занимался изучением стафилококков, но его лаборатория часто была неопрятной, что и стало причиной открытия.

Пенициллин. Фото: www.globallookpress.com

3 сентября 1928 года Флеминг вернулся в свою лабораторию после месяца отсутствия. Собрав все культуры стафилококков, учёный заметил, что на одной пластине с культурами появились плесневые грибы, а присутствовавшие там колонии стафилококков были уничтожены, в то время как другие колонии — нет. Флеминг отнёс грибы, выросшие на пластине с его культурами, к роду пеницилловых, и назвал выделенное вещество пенициллином.

В ходе дальнейших исследований Флеминг заметил, что пенициллин воздействует на такие бактерии, как стафилококки и многие другие возбудители, которые вызывают скарлатину, пневмонию, менингит и дифтерию. Однако выделенное им средство не помогало от брюшного тифа и паратифа.

Доклад о своём открытии Флеминг опубликовал в 1929 году в Британском журнале экспериментальной патологии.

Продолжая свои исследования, Флеминг обнаружил, что работать с пенициллом трудно, производство происходит медленно, кроме этого, пенициллин не может существовать в теле человека достаточно долго, чтобы убивать бактерии. Также учёный не мог извлечь и очистить активное вещество.

До 1942 года Флеминг совершенствовал новый препарат, но до 1939 года вывести эффективную культуру так и не удалось. В 1940 году немецко-английский биохимик Эрнст Борис Чейн и Хоуард Уолтер Флори, английский патолог и бактериолог, активно занимались попыткой очистить и выделить пенициллин, и спустя некоторое время им удалось произвести достаточно пенициллина для лечения раненых.

В 1941-м лекарство удалось накопить в достаточных масштабах для эффективной дозы. Первым человеком, которого удалось спасти с помощью нового антибиотика, был 15-летний подросток с заражением крови.

В 1945 году Флемингу, Флори и Чейну была присуждена Нобелевская премия по физиологии и медицине «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях».

Фото: www.globallookpress.com

Значение пенициллина в медицине

В разгар Второй мировой войны в США производство пенициллина уже было поставлено на конвейер, что спасло от гангрены и ампутации конечностей десятки тысяч американских и союзнических солдат. Со временем метод производства антибиотика был усовершенствован, и с 1952 года сравнительно дешёвый пенициллин стал применяться практически в мировых масштабах.

При помощи пенициллина можно вылечить остеомиелит и пневмонию, сифилис и родильную горячку, предотвратить развитие инфекций после ранений и ожогов — раньше все эти заболевания были смертельными. В ходе развития фармакологии были выделены и синтезированы антибактериальные препараты других групп, и когда были получены другие виды антибиотиков, перестал быть приговором и туберкулёз.

Лекарственная устойчивость

На несколько десятилетий антибиотики стали почти панацеей от всех болезней, но ещё сам первооткрыватель Александр Флеминг предупреждал, что не стоит использовать пенициллин, пока заболевание не будет диагностировано, и нельзя использовать антибиотик в течение короткого времени и в совсем малых количествах, так как при этих условиях у бактерий развивается устойчивость.

Когда в 1967 году был выявлен пневмококк, не чувствительный к пенициллину, а в 1948 году были обнаружены устойчивые к антибиотику штаммы золотистого стафилококка, учёным стало понятно, что бактерии приспосабливаются к лекарствам.

«Открытие антибиотиков было величайшим благом для человечества, спасением миллионов людей. Человек создавал всё новые и новые антибиотики против разных возбудителей инфекций. Но микромир сопротивляется, мутирует, микробы приспосабливаются. Возникает парадокс — люди разрабатывают новые антибиотики, а микромир вырабатывает своё сопротивление», — рассказала старший научный сотрудник Государственного научно-исследовательского центра профилактической медицины, кандидат медицинских наук, эксперт «Лиги здоровья нации» Галина Холмогорова.

По мнению многих экспертов, в том, что антибиотики теряют свою эффективность в борьбе с заболеваниями, во многом виноваты и сами пациенты, не всегда принимающие антибиотики строго по показаниям или в необходимых дозах.

«Проблема резистентности исключительно велика и затрагивает всех. Она вызывает большую тревогу учёных, мы можем вернуться в доантибиотиковую эру, потому что все микробы станут резистентны, ни один антибиотик не будет действовать на них. Наши неумелые действия привели к тому, что мы можем оказаться без очень мощных лекарств. Лечить такие страшные болезни, как туберкулёз, ВИЧ, СПИД, малярия, будет просто нечем», — пояснила Галина Холмогорова.

Именно поэтому к лечению антибиотиками нужно относиться очень ответственно и соблюдать ряд простых правил, в частности:

– никогда не принимать антибиотики без рекомендации врача;

– не прерывать курс лечения, даже если вам стало лучше;

– помнить, что антибиотики не помогают при вирусных инфекциях.

Читайте в соцсетях!

aif.ru

История открытия пенициллина. Досье - Биографии и справки

ТАСС-ДОСЬЕ /Юлия Ковалева/. 75 лет назад, 12 февраля 1941 г., в Лондоне британские ученые Говард Флори и Эрнст Чейн впервые применили пенициллин для лечения человека. Редакция ТАСС-ДОСЬЕ подготовила материал об истории открытия этого препарата.

Пенициллин - антибиотик, обладающий широким антимикробным действием. Является первым эффективным лекарством против многих тяжелых заболеваний, в частности, сифилиса и гангрены, а также инфекций, вызываемых стафилококками и стрептококками. Его получают из некоторых видов плесневого грибка рода Penicillium (лат. penicillus - "кисть"; под микроскопом спороносные клетки плесени похожи на кисточку).

История открытия

Упоминания об использовании плесени в лечебных целях встречаются в трудах персидского ученого Авиценны (II в.) и швейцарского врача и философа Парацельса (XIV в.). Боливийский специалист по этноботанике Энрике Облитас Поблете в 1963 г. описал применение плесени индейскими знахарями в эпоху инков (XV-XVI вв.).

В 1896 г. итальянский врач Бартоломео Гозио, изучая причины поражения риса плесенью, вывел формулу антибиотика, схожего с пенициллином. Ввиду того, что он не смог предложить практическое применение нового лекарства, его открытие было забыто. В 1897 г. французский военный врач Эрнест Дюшен заметил, что арабские конюхи собирают плесень с сырых седел и лечат ею раны лошадей. Дюшен тщательно обследовал плесень, опробовал ее на морских свинках и выявил ее разрушающее действие на палочку брюшного тифа. Результаты своих исследований Эрнест Дюшен представил в парижском институте Пастера, но они также не были признаны. В 1913 г. американским ученым Карлу Альсбергу и Отису Фишеру Блэку удалось получить из плесени кислоту, обладающую противомикробными свойствами, однако их исследования были прерваны с началом Первой мировой войны.

В 1928 г. британский ученый Александр Флеминг проводил рядовой эксперимент в ходе исследования сопротивляемости человеческого организма бактериальным инфекциям. Он обнаружил, что некоторые колонии стафилококковых культур, оставленные им в лабораторных чашках, заражены штаммом плесени Penicillium Notatum. Вокруг пятен плесени Флеминг заметил область, в которой бактерий не было. Это позволило ему сделать вывод о том, что плесень вырабатывает убивающее бактерии вещество, которое ученый назвал "пенициллином".

Флеминг недооценил свое открытие, полагая, что получить лекарство будет очень трудно. Его работу продолжили ученые из Оксфорда Говард Флори и Эрнст Чейн. В 1940 г. они выделили препарат в чистом виде и изучили его терапевтические свойства. 12 февраля 1941 г. инъекция пенициллина впервые была сделана человеку. Пациентом Флори и Чейна стал лондонский полицейский, умиравший от заражения крови. После нескольких инъекций ему стало лучше, однако запас лекарства быстро закончился, и больной скончался. В 1943 г. Говард Флори передал технологию получения нового препарата американским ученым, в США было налажено массовое производство антибиотика. В 1945 г. Александр Флеминг, Говард Флори и Эрнст Чейн были удостоены Нобелевской премии по физиологии и медицине.

Исследования российских и советских ученых

В 1870-х гг. исследованием плесени занимались медики Алексей Полотебнов и Вячеслав Манассеин, которые обнаружили, что она блокирует рост других микроорганизмов. Полотебнов рекомендовал использовать эти особенности плесени в медицине, в частности, для лечения кожных заболеваний. Но идея не получила распространения.

В СССР первые образцы пенициллина получили микробиологи Зинаида Ермольева и Тамара Балезина. В 1942 г. они обнаружили штамм Penicillium Crustosum, продуцирующий пенициллин. В ходе испытаний лекарство показало гораздо большую активность, чем его английские и американские аналоги. Однако полученный антибиотик терял свойства при хранении и вызывал повышение температуры у пациентов.

В 1945 г. в Советском Союзе начались испытания пенициллина, разработанного по западному образцу. Технология его производства была освоена НИИ эпидемиологии и гигиены Красной Армии под руководством Николая Копылова.

Признание

Массовое производство пенициллина было налажено во время Второй мировой войны. По некоторым оценкам, благодаря этому антибиотику в годы войны и после нее были спасены около 200 млн человек. Открытие этого препарата не раз признавалось одним из важнейших научных достижений в истории человечества. Большинство современных антибиотиков были созданы именно после исследования лечебных свойств пенициллина.

tass.ru

Род Пеницилл (Penicillium) - это... Что такое Род Пеницилл (Penicillium)?

        Пенициллы по праву занимают первое место по распространению среди гифомицетов. Естественный резервуар их — почва, причем они, будучи в большинстве видов космополитами, в отличие от аспергиллов, приурочены больше к почвам северных широт.

        Как и аспергиллы, они наиболее часто обнаруживаются в виде плесневых налетов, состоящих в основном из конидиеносцев с конидиями, на самых разных субстратах, главным образом растительного происхождения.

        Представители этого рода были обнаружены одновременно с аспергиллами благодаря их в общем сходной экологии, широкому распространению и морфологическому сходству.

        Мицелий пенициллов в общих чертах не отличается от мицелия аспергиллов. Он бесцветный, многоклетный, ветвящийся. Основное различие между этими двумя близкими родами заключается в строении конидиального аппарата. У пенициллов он более разнообразен и представляет собой в верхней части кисточку различной степени сложности (отсюда его синоним «кистевик»). На основе строения кисточки и некоторых других признаков (морфологических и культуральных) в пределах рода установлены секции, подсекции и серии.



        Самые простые конидиеносцы у пенициллов несут на верхнем конце только пучок фиалид, образующих цепочки конидий, развивающихся базипетально, как у аспергиллов. Такие конидиеносцы называют одномутовчатыми или моновертициллятными (секция Monoverticillata, рис. 231). Более сложная кисточка состоит из метул, т. е. более или менее длинных клеток, расположенных на вершине конидиеносца, а на каждой из них находится по пучку, или мутовке, фиалид. При этом метулы могут быть или в виде симметричного пучка (рис. 231), или в небольшом количестве и тогда одна из них как бы продолжает основную ось конидиеносца, а другие располагаются на нем не симметрично (рис. 231). В первом случае они называются симметричными (секция Biverticillata-symmetrica), во втором — асимметричными (секция Аэутmetrica). Асимметричные конидиеносцы могут иметь еще более сложное строение: метулы тогда отходят от так называемых веточек {рис. 231). И наконец, у немногих видов как веточки, так и метулы могут быть расположены не в один «этаж», а в два, три и больше. Тогда кисточка оказывается как бы многоэтажной, или многомутовчатой (секция Polyverticillata). У некоторых видов конидиеносцы объединяются в пучки — коремии, особенно хорошо развитые в подсекции Asymmetrica-Fasciculata. Когда коремии преобладают в колонии, их можно видеть невооруженным глазом. Иногда они бывают высотой 1 см и больше. Если в колонии коремии слабо выражены, то она имеет мучнистую или зернистую поверхность, чаще всего в краевой зоне.

        Детали строения конидиеносцев (гладкие они или шиповатые, бесцветные или окрашенные), размеры их частей могут быть различны в разных сериях и у разных видов, так же как форма, строение оболочки и размеры зрелых конидий (табл. 56).



        Так же как у аспергиллов, у некоторых пенициллов имеется высшее спороношение — сумчатое (половое). Сумки так же развиваются в нлейстотециях, похожих на клейстотеции аспергиллов. Эти плодовые тела были впервые изображены в работе О. Брефельдом (1874).

        Интересно, что у пенициллов существует та же закономерность, которая отмечена для аспергиллов, а именно: чем проще строение конидиеносного аппарата (кисточки), тем у большего числа видов мы находим клейстотеции. Таким образом, чаще всего они обнаруживаются в секциях Monoverticillata и Biverticillata-Symmetrica. Чем сложнее кисточка, тем меньше в этой группе встречается видов с клейстотециями. Так, в подсекции Asymmetrica-Fasciculata, характеризующейся особенно мощными конидиеносцами, объединенными в коремии, нет ни одного вида с клейтотециями. Из этого можно заключить, что эволюция пенициллов шла в направлении усложнения конидиеносного аппарата, возрастающей продукции конидий и угасания полового размножения. По этому поводу можно высказать некоторые соображения. Так как у пенициллов, как и у аспергиллов, имеется гетерокариозис и парасексуальный цикл, то эти особенности представляют собой ту базу, на основе которой могут возникать новые формы, приспосабливающиеся к разным экологическим условиям и способные завоевать новые жизненные пространства для особей вида и обеспечивать его процветание. В соединении с тем огромным количеством конидий, которые возникают на сложном конидиеносце (оно измеряется десятками тысяч), в то время как в сумках и в нлейстотециях в целом количество спор несоизмеримо меньше, общая продукция этих новых форм может быть очень велика. Таким образом, наличие парасексуального цикла и эффективного образования конидий, по существу, обеспечивает грибам ту выгоду, которую другим организмам доставляет половой процесс по сравнению с бесполым или вегетативным размножением.

        В колониях многих пенициллов, как у аспергиллов, имеются склероции, служащие, по-видимому, для перенесения неблагоприятных условий.

        Таким образом, в морфологии, онтогенезе и других особенностях аспергиллов и пенициллов имеется очень много общего, что позволяет предполагать их филогенетическую близость. Некоторые пенициллы из секции Monoverticillata имеют сильно расширенную верхушку конидиеносца, напоминающую вздутие конидиеносца аспергиллов, и, как аспергиллы, встречаются чаще в южных широтах. Поэтому можно представить себе отношения между этими двумя родами и эволюцию в пределах этих родов следующим образом:



        

        Внимание к пенициллам возросло, когда у них впервые была открыта способность образовывать антибиотик пенициллин. Тогда в изучение пенициллов включились ученые самых разнообразных специальностей: бактериологи, фармакологи, медики, химики и т. д. Это вполне понятно, так как открытие пенициллина было одним из выдающихся событий не только в биологии, но и в ряде других областей, особенно в медицине, ветеринарии, фитопатологии, где антибиотики нашли затем самое широкое применение. Именно пенициллин был первым открытым антибиотиком. Широкое признание и применение пенициллина сыграло большую роль в науке, так как ускорило открытие и введение в лечебную практику других антибиотических веществ.

        Лечебные свойства плесеней, образуемых колониями пенициллов, были впервые отмечены русскими учеными В. А. Манассеиным и А. Г. Полотебновым еще в 70-х годах прошлого века. Они использовали эти плесени для лечения кожных заболеваний и сифилиса.

        В 1928 г. в Англии профессор А. Флеминг обратил внимание на одну из чашек с питательной средой, на которую была посеяна бактерия стафиллококк. Колония бактерии перестала расти под действием попавшей из воздуха и развивавшейся в этой же чашке сине-зеленой плесени. Флеминг выделил гриб в чистую культуру (зто оказался Penicillium notatum) и продемонстрировал его способность продуцировать бактериостатическое вещество, которое он назвал пенициллином. Флеминг рекомендовал использовать это вещество и отметил, что его можно применять в медицине. Однако значение пенициллина стало очевидным в полной мере лишь в 1941 г. Флори, Чейн и другие описали методы получения, очистки пенициллина и итоги первых клинических испытаний этого препарата. После этого была намечена программа дальнейших исследований, включавшая поиски более подходящих сред и способов культивирования грибов и получения более продуктивных штаммов. Можно считать, что именно с работ по повышению продуктивности пенициллов началась история научной селекции микроорганизмов.

        Еще в 1942—1943 гг. было установлено, что способностью продуцировать большое количество пенициллина обладают также некоторые штаммы другого вида—P. chrysogenum (табл. 57). Активные штаммы были выделены в СССР в 1942 г. профессором 3. В. Ермольевой с сотрудниками. Много продуктивных штаммов выделено и за рубежом.



        Вначале пенициллин получали, используя штаммы, выделенные из различных природных источников. Это были штаммы P. notaturn и P. chrysogenum. Затем были отобраны изоляты, дававшие более высокий выход пенициллина, сначала в условиях поверхностной, а потом и погруженной культуры в особых чанах—ферментерах. Был получен мутант Q-176, отличающийся еще более высокой продуктивностью, который и использовался для промышленного получения пенициллина. В дальнейшем на основе уже этого штамма были селекционированы еще более активные варианты. Работа по получению активных штаммов ведется непрерывно. Высокопродуктивные штаммы получают преимущественно при помощи сильнодействующих факторов (рентгеновские и ультрафиолетовые лучи, химические мутагены).

        Лечебные свойства пенициллина очень разнообразны. Он действует на гноеродные кокки, гонококки, анаэробные бактерии, вызывающие газовую гангрену, в случаях различных абсцессов, карбункулов, раневых инфекций, остеомиелита, менингита, перитонита, эндокардитов и дает возможность спасти жизнь больных, когда другие лечебные препараты (в частности, сульфамидные) бессильны.

        В 1946 г. удалось осуществить синтез пенициллина, который был идентичен природному, полученному биологическим путем. Однако современная пенициллиновая промышленность базируется на биосинтезе, так как он дает воз можность массового изготовления дешевого препарата.

        Из секции Monoverticillata, представители которой чаще встречаются в более южных районах, наиболее распространен Penicillium frequentans. Он образует на питательной среде широко растущие бархатистые зеленые колонии с красновато-коричневой обратной стороной. Цепочки конидий на одном конидиеносце обычно соединены в длинные колонки, хорошо видимые при малом увеличении микроскопа. P. frequentans продуцирует ферменты пектиназу, используемую для просветления фруктовых соков, и протеиназу. При низкой кислотности среды этот гриб, как и близкий к нему P. spinulosum, образует глюконовую кислоту, а при более высокой кислотности — лимонную.

        Из лесных почв и подстилки главным образом хвойных лесов разных мест земного шара выделяется обычно P. thomii (табл. 56, 57), легко отличимый от других пенициллов секции Monoverticillata наличием розовых склероциев. Штаммы этого вида отличаются высокой активностью в разрушении танина, а также они образуют пенициллиновую кислоту — антибиотик, действующий на грамположительные и грамотрицательные бактерии, микобактерии, актиномицеты, на некоторые растения и животных.



,

        Многие виды из той же секции Monoverticillata были выделены с предметов военного снаряжения, с оптических инструментов и других материалов в условиях субтропиков и тропиков.

        С 1940 г. в странах Азии, особенно в Японии и Китае, известно тяжелое заболевание людей под названием отравления от желтого риса. Оно характеризуется сильным поражением центральной нервной системы, двигательных нервов, расстройством сердечно-сосудистой системы и органов дыхания. Причиной заболевания оказался гриб P. citreo-viride, выделяющий токсин цитреовиридин. В связи с этим было высказано предположение, что при заболевании людей бери-бери наряду с авитаминозом имеет место и острый микотоксикоз.

        Не меньшее значение имеют представители секции Biverticillata-symmetrica. Они выделяются из различных почв, из растительных субстратов и промышленных изделий в условиях субтропиков и тропиков.

        Многие из грибов этой секции отличаются яркой окраской колоний и выделяют пигменты, диффундирующие в окружающую среду и окрашивающие ее. При развитии этих грибов на бумаге и бумажных изделиях, на книгах, предметах искусства, тентовых покрытиях, обивках автомобилей образуются цветные пятна. Один из основных грибов на бумаге и книгах — P. purpurogenum. Его широко растущие бархатистые желтовато-зеленые колонии обрамлены желтой каймой растущего мицелия, а обратная сторона колонии имеет пурпурно-красную окраску. Красный пигмент выделяется и в окружающую среду.

        Иногда P. purpurogenum паразитирует на растениях, в частности на корнях проростков кукурузы, на грибах аспергиллах, поселяется также на личинках некоторых видов комаров. Его споры, находящиеся в воздухе, могут быть причиной аллергических явлений (астмы, сенной лихорадки). Этот гриб вызывает также нередко отомикозы. Он входит в группу почвенных грибов-токсинообразователей и, в частности, угнетает развитие в почве азотфиксирующей бактерии Azotobacter chroococcnm.

        Особенно большое распространение и значение среди пенициллов имеют представители секции Asymmetrica.

        Выше уже говорилось о продуцентах пенициллина — P. chrysogenum и P. notatum. Они встречаются в почве и на различных органических субстратах. Макроскопически их колонии сходны. Они имеют зеленую окраску, и для них, как и для всех видов серии P. chrysogenum, характерно выделение на поверхности колонии эксудата желтого цвета и такого же пигмента в среду (табл. 57).



        Можно добавить, что оба эти вида вместе с пенициллином часто образуют эргостерол.

        Очень большое значение имеют пенициллы из серии P. roqueforti. Они обитают в почве, но преобладают в группе сыров, характеризующихся «мраморностью». Это сыр «Рокфор», родиной которого является Франция; сыр «Горгонцола» из Северной Италии, сыр «Стилтош» из Англии и др. Всем этим сырам свойственны рыхлая структура, специфический вид (прожилки и пятна голубовато-зеленого цвета) и характерный аромат. Дело в том, что соответствующие культуры грибов используются в определенный момент процесса изготовления сыров. P. roqueforti и родственные виды способны расти в рыхло спрессованном твороге потому, что хорошо переносят пониженное содержание кислорода (в смеси газов, образующихся в пустотах сыра, его содержится меньше 5%). Кроме того, они устойчивы к высокой концентрации соли в кислой среде и образуют при этом липолитические и протеолитические ферменты, воздействующие на жировые и белковые компоненты молока. В настоящее время в процессе изготовления указанных сыров применяют селекционированные штаммы грибов.

        Из мягких французских сыров —«Камамбер», «Бри» и др. — выделены P. camamberti и Р. саseicolum. Оба эти вида так давно и настолько адаптировались к своему специфическому субстрату, что из других источников почти не выделяются. В заключительной стадии изготовления сыров «Камамбер» или «Бри» творожную массу помещают для созревания в специальную камеру с температурой 13—14 °С и влажностью 55—60%, воздух которой содержит споры соответствующих грибов. В течение недели вся поверхность сыра покрывается пушистым белым налетом плесени толщиной 1—2 мм. Примерно в течение десяти дней плесневый налет приобретает голубоватый или зеленовато-серый цвет в случае развития P. camamberti или остается белым при преимущественном развитии Р. саseicolum. Масса сыра под воздействием ферментов грибов приобретает сочность, маслянистость, специфические вкус и аромат.

        Кроме указанных пенициллов, используемых человеком в столь различных направлениях, среди представителей секции Asymmetriса имеется много вредоносных. Так, большой экономический ущерб причиняют P. digitatum и P. italicum, вызывающие гниение плодов цитрусовых. Часто обе гнили встречаются вместе, но они легко различимы, особенно в начале образования плесневых налетов. P. digitatum — раневой паразит, т. е. в здоровые, неповрежденные плоды его мицелий проникнуть не может. При благоприятных условиях он очень быстро распространяется по поверхности плодов, покрывая их в течение трех-четырех дней зеленовато-оливковым плотным налетом конидий. Пораженные плоды очень быстро сохнут на воздухе, сморщиваются и в заключение покрываются углублениями и мумифицированной коркой грязно-оливково-коричневого цвета («зеленая гниль» плодов цитрусовых).

        P. digitatum выделяет этилен, вызывающий более быстрое созревание здоровых плодов цитрусовых, находящихся поблизости от плодов, пораженных этим грибом.

        P. italicum представляет собой сине-зеленую плесень, вызывающую мягкую гниль плодов цитрусовых. Этим грибом чаще поражаются апельсины и грейпфруты, чем лимоны, в то время как P. digitatum развивается с равным успехом на лимонах, апельсинах и грейпфрутах. При интенсивном развитии P. italicum плоды быстро теряют свою форму и покрываются пятнами слизи.

        Конидиеносцы P. italicum часто соединяются в коремии, и тогда плесневый налет приобретает зернистость. Оба гриба имеют приятный ароматический запах.



        В почве и на различных субстратах (зерне, хлебе, промышленных товарах и т. п.) часто встречается P. expansum (табл. 58).Но особенно известен он как причина быстро развивающейся мягкой коричневой гнили яблок. Потери яблок от этого гриба при хранении составляют иногда 85—90%. Конидиеносцы этого вида также образуют коремии. Массы спор его, присутствующие в воздухе, могут вызывать аллергические заболевания.

        Некоторые виды коремиальных пенициллов приносят большой вред цветоводству. Р. согутbiferum выделяется с луковиц тюльпанов в Голландии, гиацинтов и нарциссов в Дании. Установлена также патогенность P. gladioli для луковиц гладиолусов и, по-видимому, для других растений, имеющих луковицы или мясистые корни.

        Большое значение из коремиальных грибов имеют пенициллы из серии P. cyclopium. Они широко распространены в почве и на органических субстратах, часто выделяются с зерна и зерновых продуктов, с промышленных товаров в разных зонах земного шара и отличаются высокой и разнообразной активностью.

        P. cyclopium (рис. 232) принадлежит к одним из самых сильных токсинообразователей в почве.



        Некоторые пенициллы секции Asymmetrica (P. nigricans) образуют антигрибной антибиотик гризеофульвин, который показал хорошие результаты в борьбе с некоторыми болезнями растений. Его можно использовать для борьбы с грибами, вызывающими заболевания кожи и волосяных луковиц у людей и животных.

        По-видимому, наиболее процветающими в природных условиях оказываются представители секции Asymmetrica. Они имеют более широкую экологическую амплитуду, чем другие пенициллы, лучше других переносят пониженную температуру (P. puberulum, например, может образовывать плесневые налеты на мясе в холодильниках) и относительно меньшее содержание кислорода. Многие из них встречаются в почве не только в поверхностных слоях, но и на значительной глубине, особенно коремиальные формы. Для некоторых видов, как, например, для P. chrysogenum, установлены очень широкие температурные границы (от —4 до +33 °С).

        Имея широкий набор ферментов, пенициллы заселяют различные субстраты и принимают самое активное участие в аэробном разрушении растительных остатков.

        Использование продуктов обмена веществ пенициллов далеко не исчерпано, и дальнейшее изучение, без сомнения, откроет новые возможности их применения в различных отраслях народного хозяйства.

Жизнь растений: в 6-ти томах. — М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров. 1974.

dic.academic.ru

Бензилпенициллин — Википедия

Бензи́лпеницилли́н (пенициллин G (PCN G) или просто пенициллин (PCN)) — N-фенилацетамид 6-аминопенициллановой кислоты. Антибиотик, получаемый из плесневого гриба пеницилла (грибов рода лат. Penicillium: лат. Penicillium chrysogenum, лат. Penicillium notatum и других). В процессе жизнедеятельности эти грибы синтезируют различные формы пенициллина: один из наиболее активных в фармакологическом плане бензилпенициллин и другие виды пенициллина, которые отличаются от первого тем, что вместо бензильной группы содержат иные радикалы. Таким образом по молекулярной структуре пенициллин это кислота, из которой получают различные соли (натриевую, калиевую, новокаиновую и другие)[1]. Семейство пенициллиновых антибиотиков включает бензилпенициллин (пенициллин G), феноксиметилпенициллин (пенициллин V) и другие[2][3].

Пенициллиновые антибиотики имеют важное историческое значение, так как они являются первыми эффективными лекарствами против многих тяжёлых заболеваний и, в частности, сифилиса, а также инфекций, вызываемых стафилококками и стрептококками. Пенициллины хорошо изучены, однако в настоящее время многие бактерии приобрели устойчивость к β-лактамным антибиотикам. Хотя, например, бледная трепонема достаточную устойчивость к пеницилинам не приобрела.

Как и другие β-лактамы, пенициллины не только препятствуют размножению клеток бактерий, в том числе и цианобактерий, но также препятствуют делению хлоропластов мхов. Но не оказывают влияния на деление пластид высших сосудистых растений[4], поскольку последние не имеют мишени для пенициллина — пептидогликановой клеточной стенки.

Многие древние культуры, в том числе древние египтяне и греки, использовали плесень и некоторые растения для лечения инфекций, так как те содержали антибиотики. Например, в Древнем Египте, Китае и Индии плесневелый хлеб использовали для дезинфекции, прикладывая его к ранам и гнойникам. Упоминания об использовании плесени в лечебных целях встречаются в трудах древних учёных и философов. В 1963 году специалист по этноботанике Энрике Облитас Поблете дал описание применению плесени индейскими знахарями в XV—XVI веках.

Пенициллин — первый антибиотик — был получен на основе продуктов жизнедеятельности микроорганизмов.

В начале 1870-х годов исследованием плесени одновременно занимались медики Алексей Герасимович Полотебнов и Вячеслав Авксентьевич Манассеин, который изучив грибок Penicillium glaucum, подробно описал основные, в частности бактериостатические, свойства зелёной плесени[5]. Полотебнов, выяснив лечебное действие плесени на гнойные раны и язвы,[6] рекомендовал использовать плесень для лечения кожных заболеваний. Его работа «Патологическое значение зелёной плесени» вышла в 1873 году. Но идея на тот момент не получила дальнейшего практического применения.

В 1896 году итальянский врач и микробиолог Бартомелео Гозио выделил из Penicillium микофеноловую кислоту, которая была активна против возбудителя сибирской язвы. Пенициллин был обнаружен в 1897 году французским военным врачом Эрнестом Дюшеном. Он заметил, что арабские конюхи использовали плесень с сёдел, чтобы обработать раны на спинах лошадей. Работая с грибами рода Penicillium, Дюшен опробовал плесень на морских свинках и обнаружил её разрушающее действие на палочку брюшного тифа. Но его работа не привлекла внимания научного сообщества.

В 1904 году русский учёный М. Г. Тартаковский сообщил, что вещество, выделяемое зелёной плесенью, подавляет развитие возбудителя куриной холеры.

В 1913 году американские учёные Карл Альсберг и Отис Фишер Блек получили из Penicillium puberulum токсичную субстанцию, обладающую противомикробными свойствами (в 1936 году, когда установили её химическую структуру, выяснилось, что это была пеницилловая кислота)[7].

Пенициллин был выделен в 1928 году Александром Флемингом из штамма гриба вида Penicillium notatum на основе случайного открытия: попадание в культуру бактерий спор плесневого гриба из внешней среды оказало на бактериальную культуру бактерицидное действие[8][9].

Несмотря на то, что статья Флемминга о пенициллине вышла ещё в 1929 году, первое время она была воспринята без энтузиазма из-за отсутствия способов его химического выделения и производства. В 1942 году, почти половина всего американского запаса пенициллина[10] — одна столовая ложка[11] — была использована для лечения всего лишь одного пациента, Анны Миллер. Имевшегося в США запаса в июне 1942 было достаточно для лечения десяти пациентов[12].

В 1940—1941 годах австралийский бактериолог Хоуард У. Флори и биохимики Эрнст Чейн и Норман Хитли работали над выделением пенициллина и разрабатывали технологию его промышленного производства сначала в Англии и, затем, в США. Они же впервые применили пенициллин для лечения бактериальных инфекций в 1941 году. В 1945 году Флемингу, Флори и Чейну была присуждена Нобелевская премия по физиологии и медицине «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях».

В СССР первые образцы пенициллина получили в 1942 году микробиологи З. В. Ермольева и Т. И. Балезина. Зинаида Виссарионовна Ермольева активно участвовала в организации промышленного производства пенициллина. Созданный ею препарат пенициллин-крустозин ВИЭМ был получен из штамма гриба вида Penicillium crustosum.

Пенициллины длительное время были основными антибиотиками, широко применявшимися в клинической практике во всех технологически развитых странах[13]. Затем, по мере развития фармакологии, были выделены и синтезированы антибиотики других групп (тетрациклины, аминогликозиды, макролиды, цефалоспорины, фторхинолоны, грамицидины и другие). Однако несмотря на большое разнообразие групп антибиотиков на современном фармацевтическом рынке и развитие резистентности к пенициллинам у многих бактерий-патогенов, пенициллины по-прежнему занимают достойное место в терапии инфекционных заболеваний, ибо основным показанием к назначению того или иного антибиотика в настоящее время является чувствительность к его действию патогенной микрофлоры (определяемая в лабораторных условиях), а также минимальное количество побочных эффектов от применения антибиотика[1].

Бензилпенициллин — антибиотик группы биосинтетических пенициллинов. Оказывает бактерицидное действие за счёт ферментативного ингибирования синтеза клеточной стенки микроорганизмов.

Активен в отношении:

К действию бензилпенициллина устойчивы штаммы Staphylococcus spp., продуцирующие пенициллиназу. Разрушается в кислой среде.

Новокаиновая соль бензилпенициллина по сравнению с калиевой и натриевой солями характеризуется большей продолжительностью действия благодаря низкой растворимости и образованию депо в месте инъекции.

После внутримышечного введения быстро всасывается из места инъекции в кровоток и широко распределяется в биологических жидкостях и тканях организма, однако в спинномозговую жидкость проникает в незначительных количествах. Бензилпенициллин хорошо проникает через плацентарный барьер. Хотя в обычных условиях после применения бензилпенициллина в спинномозговой жидкости он обнаруживается в незначительном количестве, тем не менее при воспалении мозговых оболочек на фоне усиления проницаемости гематоэнцефалического барьера концентрация антибиотика в ликворе повышается. T½ — 30 мин. Выводится с мочой. После внутримышечного введения максимальная концентрация в крови наблюдается через 30—60 минут, а через 3—4 часа после однократно проведённой внутримышечной или подкожной инъекции в крови обнаруживаются лишь следовые концентрации антибиотика. Концентрация и продолжительность циркуляции бензилпенициллина в крови зависит от величины вводимой дозы. Тем не менее, для поддержания достаточно высокой концентрации, необходимой для реализации терапевтического воздействия необходимо повторять инъекции бензилпенициллина каждые 3—4 часа. Следует учитывать, что при приёме внутрь антибиотик плохо всасывается, частично разрушается желудочным соком и бета-лактамазой, продуцируемой микрофлорой кишечника, а при внутривенном введении концентрация бензилпенициллина быстро снижается[1].

Лечение заболеваний, вызванных чувствительными к бензилпенициллину микроорганизмами: крупозная и очаговая пневмонии, эмпиема плевры, сепсис, септицемия, пиемия, острый и подострый септический эндокардит, менингиты, острый и хронический остеомиелиты, инфекции мочевыводящих и жёлчных путей, ангины, гнойные инфекции кожи, мягких тканей и слизистых оболочек, рожа, дифтерия, скарлатина, сибирская язва, актиномикоз, лечение гнойно-воспалительных заболеваний в акушерско-гинекологической практике, ЛОР-заболеваний, глазных болезней, гонорея, бленнорея, сифилис.

Со стороны пищеварительной системы: диарея, тошнота, рвота.

Эффекты, обусловленные химиотерапевтическим действием: кандидоз влагалища, кандидоз полости рта.

Со стороны ЦНС: при применении бензилпенициллина в больших дозах, особенно при эндолюмбальном введении, возможно развитие нейротоксических реакций: тошнота, рвота, повышение рефлекторной возбудимости, симптомы менингизма, судороги, кома.

Аллергические реакции: повышение температуры тела, крапивница, кожная сыпь, сыпь на слизистых оболочках, боли в суставах, эозинофилия, ангионевротический отёк. Описаны случаи анафилактического шока с летальным исходом. В таком случае полагается немедленное внутривенное введение адреналина.

Повышенная чувствительность к бензилпенициллину и другим препаратам из группы пенициллинов и цефалоспоринов. Эндолюмбальное введение противопоказано пациентам, страдающим эпилепсией.

Применение при беременности возможно только в том случае, когда ожидаемая польза превышает риск развития побочных действий. При необходимости применения в период грудного вскармливания следует решить вопрос о прекращении грудного вскармливания (молоко пациентки сцеживается, чтобы лактация не прекратилась). Причина всего этого в том, что пенициллин хорошо проникает через молочные железы в молоко матери, и через плаценту к плоду, что способно вызвать негативные последствия для последнего — у детей пенициллин способен вызывать тяжёлые аллергические реакции даже при первом применении.

С осторожностью применяют у пациентов с нарушениями функции почек, при сердечной недостаточности, предрасположенности к аллергическим реакциям (особенно при лекарственной аллергии), при повышенной чувствительности к цефалоспоринам (из-за возможности развития перекрёстной аллергии). Если через 3-5 дней после начала применения эффекта не отмечается, следует перейти к применению других антибиотиков или комбинированной терапии. В связи с возможностью развития грибковой суперинфекции целесообразно при лечении бензилпенициллином назначать противогрибковые препараты. Необходимо учитывать, что применение бензилпенициллина в субтерапевтических дозах или досрочное прекращение лечения часто приводит к появлению резистентных штаммов возбудителей. Бензилпенициллин в форме порошка для инъекций включён в Перечень ЖНВЛС.

В случае инфекционных заболеваний, вызванных микроорганизмами не чувствительными к бензилпенициллину (в том числе при заболевании вирусами гриппа, не осложнённом бактериальной инфекцией) клиническое применение бензилпенициллина нерационально, а в связи с возможностью развития побочных эффектов от проводимого лечения антибиотиком — не вполне безопасно[1].

Angicilline, Capicillin, Cilipen, Conspen, Cosmopen, Cracillin, Crystacillin, Crystapen, Deltapen, Dropcillin, Falapen, Lanacillin, Novopen, Panavlon, Pentallin, Pharmacillin, Pradupen, Rentopen, Rhinocillin, Solupen, Solvocillin, Supracillina, Veticillin и другие[1].

Пробенецид снижает канальцевую секрецию бензилпенициллина, в результате повышается концентрация последнего в плазме крови, увеличивается период полувыведения. При одновременном применении с антибиотиками, оказывающими бактериостатическое действие (тетрациклин), уменьшается бактерицидное действие бензилпенициллина.

Биосинтез[править | править код]

Биосинтез пенициллина. На первой стадии происходит конденсация трёх аминокислот, на второй — окисление трипептида и образование двуциклического интермедиата — пенициллина N, на третьей — трансаминирование и образование пенициллина G

Биосинтез пенициллина осуществляется в три стадии:

  • На первой стадии происходит конденсация трёх аминокислот: L-α-аминоадиповой кислоты, L-цистеина, L-валина в трипептид.[14][15][16] Перед конденсацией в трипептид аминокислота L-валин превращается D-валин.[17][18] Указанный трипептид называется δ-(L-α-аминоадипил)-L-цистеин-D-валином (англ. ACV). Реакции конденсации и эпимеризации катализируются ферментами δ-(L-α-аминоадипил)-L-цистеин-L-валинсинтетазой (англ. ACVS) и синтетазой нерибосомных пептидов (англ. NRPS).
  • Вторая стадия биосинтеза пенициллина — это окисление линейной молекулы ACV в двуциклический интермедиат изопенициллин N ферментом изопенициилин N синтетазой (англ. IPNS), продуктом гена pcbC.[14][15] Изопенициллин N — очень слабый интермедиат, так как он не обладает противомикробной активностью.[17]
  • На заключительной стадии происходит трансаминирование ферментом изопенициллин N N-ацилтрансферазой, при этом α-аминоадипиловая боковая цепь изопенициллина N удаляется и заменяется на фенилуксусную кислоту. Фермент, катализирующий эту реакцию является продуктом гена penDE.[14]

Полный синтез[править | править код]

Химик Джон Шиэн (англ. Sheehan) в Массачусетском технологическом институте (англ. MIT) в 1957 году осуществил полный химический синтез пенициллина.[19][20][21] Шиэн приступил к изучению синтеза пенициллинов в 1948 году и в ходе исследований разработал новые методы синтеза пептидов, а также новые защитные группы.[21][22] Хотя метод синтеза, разработанный Шиэном не был пригоден для массового производства пенициллинов, один из интермедиатов в синтезе (6-аминопенициллановая кислота, англ. 6-APA) является ядром молекулы пенициллина.[21][23] Присоединение разных групп к ядру 6-APA позволило получить новые формы пенициллинов.

Производные[править | править код]

Выделение ядра молекулы пенициллина 6-APA, позволило получить новые полусинтетические антибиотики, обладающие лучшими свойствами, чем бензилпенициллин (биодоступность, спектр антимикробного действия, стабильность).

Первым важным полученным производным был ампициллин, который обладал более широким спектром антибактериальной активности, чем исходные препараты антибиотиков. Дальнейшие исследования позволили получить устойчивые к β-лактамазе антибиотики, в том числе, флуклоксациллин, диклоксациллин и метициллин. Эти антибиотики были эффективны против бактерий, синтезирующих бета-лактамазу, однако, неэффективны против устойчивого к метициллину золотистого стафиллококка (англ. MRSA), возникшего немного позднее.

  1. 1 2 3 4 5 М. Д. Машковский. Лекарственные средства. В двух частях. — 12-е изд., перераб. и доп. — М.: Медицина, 1993. — Т. II. — С. 245—251. — 688 с ил. с. — (Пособие для врачей). — 75 000 экз. — ISBN 5-225-02735-0.
  2. Garrod, L. P. Relative Antibacterial Activity of Three Penicillins (англ.) // British Medical Journal : journal. — 1960. — Vol. 1, no. 5172. — P. 527—529. — doi:10.1136/bmj.1.5172.527.
  3. Garrod, L. P. The Relative Antibacterial Activity of Four Penicillins (англ.) // British Medical Journal : journal. — 1960. — Vol. 2, no. 5214. — P. 1695—1696. — doi:10.1136/bmj.2.5214.1695. — PMID 13703756.
  4. Kasten, Britta; Reski, Ralf. β-lactam antibiotics inhibit chloroplast division in a moss (Physcomitrella patens) but not in tomato (Lycopersicon esculentum) (англ.) // Plant Physiology : journal. — American Society of Plant Biologists, 1997. — 30 March (vol. 150, no. 1—2). — P. 137—140. — doi:10.1016/S0176-1617(97)80193-9.
  5. ↑ МАНАССЕИН Вячеслав Авксентьевич (неопр.).
  6. ↑ ПОЛОТЕБНОВ Алексей Герасимович (неопр.).
  7. ↑ Медицинский музей и медицинская коммуникация. Сборник материалов V Всероссийской научно-практической конференции «Медицинские музеи России: состояние и перспективы развития». — Москва, 5—6 апреля 2018.
  8. ↑ Alexander Fleming – Time 100 People of the Century (неопр.). Time. — «It was a discovery that would change the course of history. The active ingredient in that mold, which Fleming named penicillin, turned out to be an infection-fighting agent of enormous potency. When it was finally recognized for what it is—the most efficacious life-saving drug in the world—penicillin would alter forever the treatment of bacterial infections.». Архивировано 16 апреля 2011 года.
  9. Haven, Kendall F. Marvels of Science : 50 Fascinating 5-Minute Reads (англ.). — Littleton, CO: Libraries Unlimited, 1994. — P. 182. — ISBN 1-56308-159-8.
  10. Мадхаван Г. Думай как инженер. — М.: Манн, Иванов и Фербер, 2016. См. главу 4.
  11. ↑ https://time.com/4250235/penicillin-1942-history/
  12. ↑ https://www.lib.niu.edu/2001/iht810139.html
  13. James, PharmD, Christopher W.; Cheryle Gurk-Turner, RPh. Cross-reactivity of beta-lactam antibiotics (англ.) // Baylor University Medical Center Proceedings. — Dallas, Texas: Baylor University Medical Center, 2001. — January (vol. 14, no. 1). — P. 106—107. — PMID 16369597.
  14. 1 2 3 Al-Abdallah, Q., Brakhage, A. A., Gehrke, A., Plattner, H., Sprote, P., Tuncher, A. Regulation of Penicillin Biosynthesis in Filamentous Fungi // Molecular Biotechnolgy of Fungal beta-Lactam Antibiotics and Related Peptide Synthetases (англ.) / Brakhage A. A.. — 2004. — P. 45—90. — ISBN 3-540-22032-1. — doi:10.1007/b99257.
  15. 1 2 Brakhage, A. A. Molecular Regulation of β-Lactam Biosynthesis in Filamentous Fungi (англ.) // Microbiology and Molecular Biology Reviews (англ.)русск. : journal. — American Society for Microbiology (англ.)русск., 1998. — Vol. 62, no. 3. — P. 547—585. — PMID 9729600.
  16. Baldwin, J. E., Byford, M. F., Clifton, I., Hajdu, J., Hensgens, C., Roach, P., Schofield, C. J. Proteins of the Penicillin Biosynthesis Pathway (неопр.) // Curr Opin Struct Biol.. — 1997. — № 7. — С. 857—864.
  17. 1 2 Fernandez, F. J., Fierro, F., Gutierrez, S., Kosalkova, K . Marcos, A. T., Martin, J. F., Velasco, J. Expression of Genes and Processing of Enzymes for the Biosynthesis of Penicillins and Cephalosporms (англ.) // Anton Van Lee : journal. — 1994. — September (vol. 65, no. 3). — P. 227—243. — doi:10.1007/BF00871951. — PMID 7847890.
  18. ↑ Baker, W. L., Lonergan, G. T. «Chemistry of Some Fluorescamine-Amine Derivatives with Relevance to the Biosynthesis of Benzylpenicillin by Fermentation». J Chem Technol Biot. 2002, 77, pp1283-1288.
  19. Sheehan, John C.; Henery-Logan, Kenneth R. The Total Synthesis of Penicillin V (англ.) // Journal of the American Chemical Society (англ.)русск. : journal. — 1957. — 5 March (vol. 79, no. 5). — P. 1262—1263. — doi:10.1021/ja01562a063.
  20. Sheehan, John C.; Henery-Logan, Kenneth R. The Total Synthesis of Penicillin V (англ.) // Journal of the American Chemical Society (англ.)русск. : journal. — 1959. — 20 June (vol. 81, no. 12). — P. 3089—3094. — doi:10.1021/ja01521a044.
  21. 1 2 3 E. J. Corey; John D. Roberts. Biographical Memoirs: John Clark Sheehan (неопр.). The National Academy Press. Дата обращения 28 января 2013. Архивировано 28 апреля 2013 года.
  22. Nicolaou, K.C.; Vourloumis, Dionisios; Winssinger, Nicolas; Baran, Phil S. The Art and Science of Total Synthesis at the Dawn of the Twenty-First Century** (англ.) // Angewandte Chemie International Edition : journal. — 2000. — Vol. 39, no. 1. — P. 44—122. — doi:10.1002/(SICI)1521-3773(20000103)39:1<44::AID-ANIE44>3.0.CO;2-L. — PMID 10649349.
  23. ↑ Professor John C. Sheehan Dies at 76 (1 апреля 1992). Дата обращения 28 января 2013.

ru.wikipedia.org

Мадам Пенициллин. Как советский учёный изобрела аналог первого антибиотика | ОБЩЕСТВО:Люди | ОБЩЕСТВО

Создателем пенициллина считается британский бактериолог Александр Флеминг, одним из первых обнаруживший лечебные свойства плесени и опубликовавший своё открытие в 1929 году. Однако об антибактериальном эффекте грибка плесени Penicillium знали ещё во времена Авиценны, в XI веке. А в 70-е годы XIX века свойства плесени широко использовали российские медики Алексей Полотебнов и Вяче­слав Манассеин для лечения кожных заболеваний.

Тем не менее выделить из плесени лечебное вещество удалось только в 1929 году. Но и это всё ещё не был устойчивый пенициллин в чистом виде. А потому Нобелевскую премию в области физиологии и медицины в 1945-м Александр Флеминг разделил с Говардом Флори и Эрнстом Чейни. Учёные разработали методы очистки антибиотика и запустили производство пенициллина в США.

Между тем, как часто случается в истории, создательница советского пенициллина – выдающийся учёный-микробиолог Зинаида Ермольева, оказалась незаслуженно забытой. А ведь именно ей удалось не только создать качественный отечественный антибиотик, оказавшийся в 1,4 раза действеннее англо-американского, но и наладить его массовое производство в страшные для страны военные годы.

На что вдохновила музыка

Как вспоминала сама Зинаида Ермольева, на выбор профессии повлияла история смерти её любимого композитора - Петра Ильича Чайковского, который, как известно, умер от холеры. А потому борьба с этим страшным заболеванием стала делом всей её жизни. Окончив с золотой медалью Мариинскую женскую гимназию в Новочеркасске, юная Зинаида поступила на медицинский факультет Донского университета, по окончании которого в 1921-м осталась работать ассистентом на кафедре микробиологии.

При этом параллельно Ермольева заведовала отделением Северо-Кавказского бактериологического института.

Когда в 1922 году в Ростове-на-Дону вспыхнула эпидемия холеры, она, игнорируя возможность заражения, проводила исследования по изучению возбудителя этого смертельного заболевания. К тому же провела опаснейший эксперимент с самозаражением. В протоколе одного из них учёная писала: «Опыт, который едва не кончился трагически, доказал, что некоторые холероподобные вибрионы, находясь в кишечнике человека, могут превращаться в истинные холерные вибрионы, вызывающие заболевание».

Кстати, тогда вибрионы холеры были найдены в ростовском водопроводе. А исследования Зинаиды Виссарионовны Ермольевой послужили основой для разработки рекомендаций по хлорированию питьевой воды.

В 1922 году Зинаида Ермольева провела опаснейший эксперимент с самозаражением холерным вибрионом. Фото: Википедия

В 1925 году Зинаида Виссарионовна переехала в Москву, чтобы организовать и возглавить отдел в Биохимическом институте Наркомздрава. Скромный багаж учёного состоял из единственного чемодана с пятьюстами культурами холерных и холероподобных вибрионов.

Как спасти Сталинград

«Ермольева работала по двум направлениям: занималась изучением возбудителя холеры и разработкой отечественного препарата пенициллина, - рассказывает аведующая кафедрой микробиологии и вирусологии №2 Ростовского медуниверситета, доктор медицинских на­ук, профессор Галина Харсеева.  - В 1942-м фашистские оккупанты предприняли попытку заразить водоснабжение Сталинграда холерным вибрионом. Туда в срочном порядке направили десант, состоящий из эпидемиологов и микробиологов во главе с Зинаидой Виссарионовной Ермольевой. В склянках с собой они везли бакте­рио­фаги - вирусы, поражающие клетки возбудителя холеры. Эшелон Ермольевой попал под бомбёжку. Множество медикаментов бы­ло уничтожено».

Пришлось восстанавливать утраченные препараты. Сложнейшее микробиологическое производство наладили в подвале одного из зданий. Еже­дневно холерный фаг вместе с хлебом принимали 50 тысяч человек. Ермольева лично учила девушек-санитарок делать прививки. По радио читали статьи по профилактике желудочно-кишечных заболеваний. Ко­лодцы с водой тщательно хлорировали. Благодаря грамотно проведённым противоэпидемическим мероприятиям вспышку холеры в Сталинграде удалось предотвратить.

Оружие под названием «Крустозин» 

«В годы Великой Отечественной войны основное количество смертей раненых бойцов приходилось на гнойно-асептические осложнения. Бороться с ними тогда не умели. Препараты зарубежного пенициллина союзники нам не продавали», - продолжает рассказ Галина Харсеева.

Возглавлявшей тогда Всесоюзный институт экспериментальной медицины Ермольевой правительство поручило создать отечественный аналог антибиотика. И она это сделала. Так, в 1942 году появился первый советский антибактериальный препарат под названием «Крустозин», а уже в 1943-м его запустили в массовое производство.

«Использование этого лекарства в армии резко снизило смертность и заболеваемость, связанную с гнойной инфекцией. Практически до 80% раненых стали возвращаться в строй. Изобретённый Ермольевой препарат в конце 40-х годов исследовали зарубежные учёные и пришли к выводу, что по своей эффективности он превосходит заокеанский пенициллин. Тогда Зинаида Ермольева и получила почётное имя - Мадам Пенициллин», - добавила Галина Харсеева.

Изобретённый Ермольевой препарат в конце 40-х годов исследовали зарубежные учёные и пришли к выводу, что по своей эффективности он превосходит заокеанский пенициллин. Фото: Из личного архива  Зинаиды Ермольевой

Где взять плесень?

Существует легенда: в 1942 году к Зинаиде Виссарионовне обратился молодой генерал из близкого окружения Сталина. У него серьёзно болела маленькая дочка - у ребёнка очень долго держалась высокая температура. Врачи были бессильны, а генерал случайно узнал о новом препарате.

Ермольева ответила, что дать ему «Крустозин» она не может, так как лекарство не прошло клинических испытаний. Но генерал настаивал. И Ермольева пошла на риск. Девочка очнулась и даже узнала отца. Требовалось продолжить лечение. Но лекарства было очень мало.

Как вспоминала о тех днях сотрудница лаборатории Тамара Балезина, плесень для выработки препарата собирали везде, где только могли - на траве, в земле, на стенах бомбоубежища. В итоге ребёнка удалось спасти. В благодарность генерал предложил Ермольевой новую квартиру. Но учёная отказалась и попросила лишь об одном - спасти из тюрьмы бывшего, но всё ещё горячо любимого репрессированного мужа - вирусолога Льва Зильбера.

Согласно другой версии, с прошением помиловать экс-супруга Ермольева обращалась к Сталину.

- Но ведь он женат на другой и к вам не вернётся, - удивился тот.

- Лев Зильбер нужен науке, - ответила Зинаида Виссарионовна.

В марте 1944 года, накануне 50-летия, Льва Зильбера освободили, по-видимому, благодаря письму о невиновности учёного, направленному на имя Сталина, которое подписал ряд известных в стране людей. Позже ему вручили Сталинскую премию.

Зинаида Ермольева родилась в 1898 г. в Волгоградской области. Окончила с золотой медалью Мариинскую женскую гимназию в Новочеркасске и медицинский факультет Донского университета. Занималась изучением холеры, открыла светящийся холероподобный вибрион, носящий её имя. В 1942 г. впервые в СССР получила пенициллин. С 1952 года и до конца жизни Зинаида Ермольева возглавляла кафедру микробиологии и лабораторию новых антибиотиков ЦИУВ (Российская медицинская академия последипломного образования). Автор более 500 научных работ и шести монографий. Стала прототипом героини романа Вениамина Каверина «Открытая книга». Умерла в 1974 г.

rostov.aif.ru

Гриб Пеницилл: строение, питание

0

1211

Рейтинг статьи

Кира Столетова

Гриб пеницилл является наиболее распространенным среди всех грибных гифомицетов. Род Пеницилл включает большое количество видов, которые являются космополитами и приурочены больше к почвам северных широт. Присутствует повсеместно. Является продуцентом лекарственного средства из группы антибиотиков – пенициллина.

Строение и жизнедеятельность гриба пеницилла

Ботаническая характеристика

Относится к группе плесневых грибов. Грибной мицелий пеницилла – это его вегетативное тело. В отличие от мукора, у которого одноклеточный характер строения мицелия, мицелий пенициллина является многоклеточным, аналогичный тому, что имеет в строении друга группа высших грибов – шляпочных. Мицелий разделяется перегородками – септами. Грибница состоит из комплекса гиф, представленных цепочками, состоящими из отдельных клеток. Грибные нити, неправильно ветвящиеся, чаще не окрашены. Размножается спорами, образующимися на концах гиф в виде кисточек, называемых конидиями. Они бывают одно- двух- и трехъярусными и несимметричными.

В роду Пеницилл есть сапротрофные и паразитарные организмы.

По внешнему описанию и строению гриб пеницилл схож с аспергиллом. Плодовые тела грибов пенициллиума изучены только у отдельных разновидностей и представляют собой микроскопических размеров закрытые клейстотеции, имеющие шаровидную форму, по структуре жесткие, сохраняющие свой внешний вид на протяжении нескольких недель, иногда – месяцев. Окраска бывает разной – белая, желтая, оранжевая и коричневая, в редких случаях – черная либо красная.

Некоторые грибные колонии представителей рода Пеницилл способны образовывать склероции.

Типы пеницилловых колоний

Условно выделены 4 основных типа:

  • Бархатистые: у них практически все вегетативные части гиф погружены в агар (питательную среду, субстрат), на поверхности субстрата располагаются конидиеносцы в виде густой массы с бархатистым видом.
  • Войлочные, или шерстистые: у них развит воздушный грибной мицелий со стерильными белыми краями, от воздушных гиф ответвляются конидиеносцы.
  • С наличием мицелиальных тяжей: у них воздушный мицелий состоит из сплетений гиф, которые поднимаются над поверхностью почвы (субстрата) и несут на себе ответвления с конидиями.
  • С наличием коремий, или пучковатые: конидиеносцы собраны в простые агрегированные пучки, создавая форму крупной зернистой массы.

Среда обитания и условия жизни

Распространен повсеместно, в том числе на земле, растительности, также в помещениях, часто селится на пищевых продуктах и способен быть активным, даже пребывая в воздушных массах. В числе предпочитаемых мест обитания – почвенные грунты в умеренных климатических зонах. При этом грибной мицелий селится непосредственно на поверхности субстрата либо полностью погружается в агар, когда наверху видны только прямостоячие либо приподнимающиеся споронесущие грибные нити – конидиеносцы. В процессе роста формирует обширные по размерам колонии с определенной плотностью.

Гриб распространен повсеместно

Примером появления пеницилла на продуктах питания растительного происхождения служит зеленая плесень.

Большинство разновидностей развиваются при температуре от 0-5°C. Есть те, которые сохраняют свою активность и растут при 37°C. Многим для поддержания процессов жизнедеятельности требуется высокая концентрация кислорода.

Виды, относящиеся к паразитам, питаются путем всасывания готовых веществ из живых организмов. Разновидности пеницилла питаются органическими остатками от отмерших организмов, пищевыми продуктами, плодами, приводя к гниению. В процессе питания плесневые грибы первоначально выделяют пищеварительные ферменты для расщепления органики до простейшего состояния.

Вред

Способен оказывать негативное воздействие, однако применим в фармацевтике и пищевой промышленности.

Благодаря большой концентрации содержащихся ферментов паразитирующий гриб приводит к порче пищевых продуктов и участвует в процессе разложения тканей животной и растительной природы, нанося вред здоровью и вызывая аллергические реакции. Большой вред наносит при повреждении сельскохозяйственной продукции и кормовых смесей если происходит нарушение правил их хранения и создаются благоприятные условия для развития пеницилла.

Применение

В фармацевтике

Плесневые грибы рода Пеницилл являются природным материалом для получения лекарства пенициллин, входящего в группу антибиотиков.

Ирина Селютина (Биолог):

В первые годы производства, пенициллин получали с использованием штаммов гриба, выделенных из природных источников (Penicillium notatum и P. chrysogenum). Затем был получен мутантный штамм Q-176 с высокой продуктивностью. Высокопродуктивные штаммы получают преимущественно с помощью сильнодействующих факторов – рентгеновских и УФ лучей, химических мутагенов. В 1946 г. синтезировали пенициллин, идентичный натуральному, полученному биологическим путем.

Продуцируют грибы пенициллины вещества, нейтрализующие и подавляющие жизнедеятельность бактерий, не давая развиваться прокариотическим организмам.

В пищевой промышленности

Некоторые разновидности используют в пищевой промышленности для сыроварения. Под влиянием содержащихся в грибках липолитических и протеолитических ферментных веществ оказывающих активное воздействие на молочные жиры и белки, сыры обретают рыхлую и маслянистую структуру, специфические гастрономические качества и запах. Такие сыры – голубые, отличающиеся зелено-голубоватым цветом сырной массы, получают с использованием некоторых видов пенициллов, т.н. «благородной плесени», например, Penicillium roqueforti.

Плесневый грибок пеницилин

ПЛЕСНЕВЫЕ ГРИБЫ для ЕГЭ|ОГЭ

Плесневые грибы

Заключение

Грибы пенициллы входят в число плесневых. Приводят к появлению плесени на органических продуктах и обогащенной среде с повышенной влажностью. Способны причинить вред здоровью. Применимы в фармакологических целях и продуцируют пенициллин убивающий бактерий, а также используются в пищевой промышленности как фермент при сыроварении.

fermoved.ru


Смотрите также