Обмен веществами и энергией с окружающей средой начинается на уровне


1. Приспособленность организмов к среде называют: а)...

а) адаптацией; б) изменчивостью;

в) эволюцией; г) наследственностью;

2. Обмен веществами и энергией с окружающей средой начинается на уровне:

а) атомов; б) органов; в) клеток; г) тканей; д) молекул.

3. Передача наследственной информации начинается на уровне:

а) атомов; б) органов; в) клеток; г) тканей; д) молекул

4. Элементарной единицей живого принято считать:

а) молекулу; б) ткань; в) атом; г) орган; д) клетку.

5. Укажите правильную иерархичность живой природы:

а) ткани — клетки — органы — организмы — молекулы — популяции — экосистемы;

б) молекулы — клетки — ткани — организмы — органы — популяции — экосистемы;

в) клетки — ткани — органы — организмы — молекулы — популяции — экосистемы;

г) молекулы — клетки — ткани — органы — организмы — популяции — экосистемы.

6. Живые организмы способны к адаптации, другими словами, они:

а) реагируют на внешние условия; б) быстро размножаются;

в) постоянно меняются; г) приспосабливаются к среде.

7. Термин биология первым стал использовать знаменитый французский естествоиспытатель:

а) Кард Линней; б) Жан-Батист Ламарк;

в) Чарлз Дарвин; г) Ч.Лайель.

8. Общая биология — наука, изучающая:

а) все явления природы; б) строение растений и животных;

в) функционирование растений и животных;

г) основные закономерности живой природы.

9. Главная особенность, отличающая живое от неживого:

а) единство химического состава; б) обмен веществ и энергии;

в) приспособленность к среде; г) самовоспроизведение;

д) способность реагировать на окружающую среду;

е) способность к адаптациям; ж) способность к движению.

10. Высшим уровнем организации жизни считают:

а) организменный; б) популяционно-видовой;

в) биосферный; г) экосистемный.

11. Какой метод исследования природы самый древний?

а) сравнение; б) эксперимент; в) наблюдение; г) моделирование

12. Какой метод исследования природы самый современный?

а) сравнение; б) эксперимент; в) наблюдение; г) моделирование

13. Систематизация организмов построена на основе:

а) сравнения и моделирования; б) наблюдения и сравнения;

в) эксперимента и моделирования; г) наблюдения и эксперимента

14. Предвидеть поведение биологических систем позволяет:

а) моделирование; б) эксперимент; в) наблюдение; г) сравнение

15. Наибольшее число видов насчитывают среди:

а) бактерий; б) животных; в) растений; г) грибов.

16. Что является для человека самым важным?

а) выведение новых сортов растений и пород животных;

б) предупреждение и лечение различных заболеваний;

в) сохранение и восстановление красоты природы;

г) осознание своего места и предназначения в природе.

17. Выше надорганизменного уровня жизни является располагается

уровень:

а) биосферный; б) популяционно-видовой;

в) экосистемный; г) клеточный.

19. Популяции разных видов, населяющие определенную территорию,

относятся к ... уровню организации жизни.

а) биосферному; б) популяционно-видовому;

в) экосистемному; г) организменному.

20. На популяционно-видовом уровне организации жизни объектом изучения является:а) одна особь; б) сообщество особей;

в) особи разных видов; г) особи одного вида.

д) все особи всех видов

21. Какой уровень организации нельзя назвать жизнью?

а) клеточный; б) молекулярный; в) атомный; г) тканевый.

22. Перечислите уровни организации жизни, начиная с низшего:

а) клеточный; б) организменный; в) экосистемный;

г) молекулярный; д) тканевый; е) органный;

ж) популяционно-видовой; з) биосферный.

zubrit.com

Обмен веществ и энергии (стр. 1 из 4)

В живых организмах любой процесс сопровождается передачей энергии. Энергию определяют как способность совершать работу. Специальный раздел физики, который изучает свойства и превращения энергии в различных системах, называется термодинамикой. Под термодинамической системой понимают совокупность объектов, условно выделенных из окружающего пространства.

Термодинамические системы разделяют на изолированные, закрытые и открытые. Изолированными называют системы, энергия и масса которых не изменяется, т.е. они не обмениваются с окружающей средой ни веществом, ни энергией. Закрытые системы обмениваются с окружающей средой энергией, но не веществом, поэтому их масса остается постоянной.

Открытыми системами называют системы, обменивающиеся с окружающей средой веществом и энергией. С точки зрения термодинамики живые организмы относятся к открытым системам, так как главное условие их существования - непрерывный обмен веществ и энергии. В основе процессов жизнедеятельности лежат реакции атомов и молекул, протекающие в соответствии с теми же фундаментальными законами, которые управляют такими же реакциями вне организма.

Согласно первому закону термодинамики энергия не исчезает и не возникает вновь, а лишь переходит из одной формы в другую.

Второй закон термодинамики утверждает, что вся энергия, в конце концов, переходит в тепловую энергию, и организация материи становится полностью неупорядоченной. В более строгой форме этот закон формулируется так: энтропия замкнутой системы может только возрастать, а количество полезной энергии (т.е. той, с помощью которой может быть совершена работа) внутри системы может лишь убывать. Под энтропией понимают степень неупорядоченности системы.

Неизбежная тенденция к возрастанию энтропии, сопровождаемая столь же неизбежным превращением полезной химической энергии в бесполезную тепловую, заставляет живые системы захватывать все новые порции энергии (пищи), чтобы поддерживать свое структурное и функциональное состояние. Фактически способность извлекать полезную энергию из окружающей среды является одним из основных свойств, которые отличают живые системы от неживых, т.е. непрерывно идущий обмен веществ и энергии является одним из основных признаков живых существ. Чтобы противостоять увеличению энтропии, поддерживать свою структуру и функции, живые существа должны получать энергию в доступной для них форме из окружающей среды и возвращать в среду эквивалентное количество энергии в форме, менее пригодной для дальнейшего использования.

Обмен веществ и энергии - это совокупность физических, химических и физиологических процессов превращения веществ и энергии в живых организмах, а также обмен веществами и энергией между организмом и окружающей средой. Обмен веществ у живых организмов заключается в поступлении из внешней среды различных веществ, в превращении и использовании их в процессах жизнедеятельности и в выделении образующихся продуктов распада в окружающую среду.

Все происходящие в организме преобразования вещества и энергии объединены общим названием - метаболизм (обмен веществ). На клеточном уровне эти преобразования осуществляются через сложные последовательности реакций, называемые путями метаболизма, и могут включать тысячи разнообразных реакций. Эти реакции протекают не хаотически, а в строго определенной последовательности и регулируются множеством генетических и химических механизмов. Метаболизм можно разделить на два взаимосвязанных, но разнонаправленных процесса: анаболизм (ассимиляция) и катаболизм (диссимиляция).

Анаболизм - это совокупность процессов биосинтеза органических веществ (компонентов клетки и других структур органов и тканей). Он обеспечивает рост, развитие, обновление биологических структур, а также накопление энергии (синтез макроэргов). Анаболизм заключается в химической модификации и перестройке поступающих с пищей молекул в другие более сложные биологические молекулы. Например, включение аминокислот в синтезируемые клеткой белки в соответствии с инструкцией, содержащейся в генетическом материале данной клетки.

Катаболизм - это совокупность процессов расщепления сложных молекул до более простых веществ с использованием части из них в качестве субстратов для биосинтеза и расщеплением другой части до конечных продуктов метаболизма с образованием энергии. К конечным продуктам метаболизма относятся вода (у человека примерно 350 мл в день), двуокись углерода (около 230 мл/мин), окись углерода (0,007 мл/мин), мочевина (около 30 г/день), а также другие вещества, содержащие азот (примерно б г/день).

Катаболизм обеспечивает извлечение химической энергии из содержащихся в пище молекул и использование этой энергии на обеспечение необходимых функций. Например, образование свободных аминокислот в результате расщепления поступающих с пищей белков и последующее окисление этих аминокислот в клетке с образованием СО2, и Н2О, что сопровождается высвобождением энергии.

Процессы анаболизма и катаболизма находятся в организме в состоянии динамического равновесия. Преобладание анаболических процессов над катаболическими приводит к росту, накоплению массы тканей, а преобладание катаболических процессов ведет к частичному разрушению тканевых структур. Состояние равновесного или неравновесного соотношения анаболизма и катаболизма зависит от возраста (в детском возрасте преобладает анаболизм, у взрослых обычно наблюдается равновесие, в старческом возрасте преобладает катаболизм), состояния здоровья, выполняемой организмом физической или психоэмоциональной нагрузки.

Превращение и использование энергии. Энергетический эквивалент пищи

В процессе обмена веществ постоянно происходит превращение энергии: энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Человек и животные получают энергию из окружающей среды в виде потенциальной энергии, заключенной в химических связях молекул жиров, белков и углеводов. Все процессы жизнедеятельности обеспечиваются энергией за счет анаэробного и аэробного метаболизма. Получение энергии без участия кислорода, например, гликолиз, (расщепление глюкозы до молочной кислоты) называется анаэробным обменом.

В ходе анаэробного расщепления глюкозы (гликолиза) или ее резервного субстрата гликогена (гликогенолиза) превращение 1 моля глюкозы в 2 моля лактата приводит к образованию 2 молей АТФ. Энергии, образующейся в ходе анаэробных процессов, недостаточно для осуществления активной жизни, реакции, происходящие с участием кислорода, энергетически более эффективны. Все процессы, генерирующие энергию с участием кислорода, называются аэробным обменом. При окислении сложных молекул химические связи разрываются, сначала органические молекулы распадаются до трехуглеродных соединений, которые включаются в цикл Кребса (цикл лимонной кислоты), а далее окисляются до СО2 и Н2О.

Высвободившиеся в этих реакциях протоны и электроны вступают в цепь переноса электронов, в которой кислород служит конечным акцептором электронов. Биологическое окисление в сущности представляет собой "сгорание" вещества при низкой температуре, часть энергии, высвобождающейся при окислении, запасается в высокоэнергетических фосфатных связях аденозинтрифосфата (АТФ). АТФ является аккумулятором химической энергии и средством ее переноса, диффундируя в те места, где она требуется. Общее количество молекул АТФ, образующихся при полном окислении 1 моля глюкозы до СО2, и Н2О, составляет 25,5 молей. При полном окислении молекулы жиров образуется большее количество молей АТФ, чем при окислении молекулы углеводов.

Динамика химических превращений, происходящих в клетках, изучается биологической химией. Задачей физиологии является определение общих затрат веществ и энергии организмом и того, как они должны восполняться с помощью полноценного питания. Энергетический обмен служит показателем общего состояния и физиологической активности организма.

Единица измерения энергии, обычно применяемая в биологии и медицине, - калория (кал). Она определяется как количество энергии, необходимое для повышения температуры 1 г воды на 1°С. В Международной системе единиц (СИ) при измерении энергетических величин используется джоуль (1 ккал= 4,19 кДж).

Энергетический эквивалент пищи

Количество энергии, выделяемой при окислении какого-либо соединения, не зависит от числа промежуточных этапов его распада, т.е. от того, сгорело ли оно или окислилось в ходе катаболических процессов. Запас энергии в пище определяется в колориметрической бомбе - замкнутой камере, погруженной в водяную баню. Точно взвешенную пробу помещают в эту камеру, наполненную чистым О2 и поджигают. Количество выделившейся энергии определяется по изменению температуры воды, окружающей камеру.

При окислении углеводов выделяется 17,17 кДж/г (4,1 ккал/г), окисление 1 г жира дает 38,96 кДж (9,3 ккал). Запасание энергии в форме жира является наиболее экономичным способом длительного хранения энергии в организме. Белки окисляются в организме не полностью. Аминогруппы отщепляются от молекулы белка и выводятся с мочой в форме мочевины. Поэтому при сжигании белка в калориметрической бомбе выделяется больше энергии, чем при его окислении в организме: при сжигании белка в калориметрической бомбе выделяется 22,61 кДж/г 5,4 ккал/г), а при окислении в организме - 17,17 кДж/г 4,1 ккал/г). Разница приходится на ту энергию, которая выделяется при сжигании мочевины,

Определение уровня метаболизма. Основной обмен

Почти половина всей энергии, получаемой в результате катаболизма, теряется в виде тепла в процессе образования молекул АТФ. Мышечное сокращение - процесс еще менее эффективный. Около 80% энергии, используемой при мышечном сокращении, теряется в виде тепла и только 20% превращается в механическую работу (сокращение мышцы). Если человек не совершает работу, то практически вся генерируемая им энергия теряется в форме тепла (например, у человека, лежащего в постели). Следовательно, величина теплопродукции является точным выражением величины обмена в организме человека.

mirznanii.com

Уровни организации жизни — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 декабря 2018; проверки требуют 8 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 декабря 2018; проверки требуют 8 правок.

Уровни организации жизни — иерархически соподчинённые уровни организации биосистем, отражающие уровни их усложнения. Чаще всего выделяют восемь основных структурных уровней жизни:

  1. молекулярный,
  2. клеточный,
  3. тканевый,
  4. органный,
  5. организменный,
  6. популяционно-видовой,
  7. биогеоценозный,
  8. биосферный.

В типичном случае каждый из этих уровней является системой из подсистем нижележащего уровня и подсистемой системы более высокого уровня. Следует подчеркнуть, что построение универсального списка уровней биосистем невозможно. Выделять отдельный уровень организации целесообразно в том случае, если на нём возникают новые свойства, отсутствующие у систем нижележащего уровня. К примеру, феномен жизни возникает на клеточном уровне, а потенциальное бессмертие — на популяционном[1]. При исследовании различных объектов или различных аспектов их функционирования могут выделяться разные наборы уровней организации. Например, у одноклеточных организмов механизмы регуляции изучаемого процесса. Одним из выводов, следующих из общей теории систем является то, что биосистемы разных уровней могут быть подобны в своих существенных свойствах, например, принципах регуляции важных для их существования параметров.

Молекулярный уровень организации жизни[править | править код]

Представлен разнообразными молекулами, находящимися в живой клетке.

  1. Компоненты
    • Молекулы неорганических и органических соединений
    • Молекулярные комплексы
  2. Основные процессы
    • Объединение молекул в особые комплексы
    • Осуществление кодирования и передачи генетической информации
  3. Науки, ведущие исследования на этом уровне

Тканевый уровень представлен тканями, объединяющими клетки определённого строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференцировки клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

Органный уровень представлен органами организмов. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счёт различных органелл. У более совершенных организмов имеются системы органов. У растений и животных органы формируются за счёт разного количества тканей. Для позвоночных характерна цефализация, заключающаяся в сосредоточении важнейших центров и органов чувств в голове.

Организменный (онтогенетический) уровень организации жизни[править | править код]

Представлен одноклеточными и многоклеточными организмами растений, животных, грибов и бактерий.

  1. Компоненты
    • Клетка — основной структурный компонент организма. Из клеток образованы ткани и органы многоклеточного организма
  2. Основные процессы
  3. Науки, ведущие исследования на этом уровне

Популяционно-видовой уровень организации жизни[править | править код]

Представлен в природе огромным разнообразием видов и их популяций.

  1. Компоненты
    • Группы родственных особей, объединённых определённым генофондом и специфическим взаимодействием с окружающей средой
  2. Основные процессы
    • Генетическое своеобразие
    • Взаимодействие между особями и популяциями
    • Накопление элементарных эволюционных преобразований
    • Осуществление микроэволюции и адаптация к изменяющейся среде
    • Видообразование
    • Увеличение биоразнообразия
  3. Науки, ведущие исследования на этом уровне

Биогеоценотический уровень организации жизни[править | править код]

Представлен разнообразием естественных и культурных биогеоценозов во всех средах жизни.

  1. Компоненты
    • Популяции различных видов
    • Факторы среды
    • Пищевые цепи, потоки веществ и энергии
  2. Основные процессы
    • Биохимический круговорот веществ и поток энергии, поддерживающие жизнь
    • Подвижное равновесие между живыми организмами и абиотической средой (гомеостаз)
    • Обеспечение живых организмов условиями обитания и ресурсами (пищей и убежищем)
  3. Науки, ведущие исследования на этом уровне

Биосферный уровень организации жизни[править | править код]

Представлен высшей, глобальной формой организации биосистем — биосферой.

  1. Компоненты
  2. Основные процессы
    • Активное взаимодействие живых и неживых веществ планеты
    • Биологический глобальный круговорот веществ и энергии
    • Активное биогеохимическое участие человека во всех процессах биосферы, его хозяйственная и этнокультурная деятельность
  3. Науки, ведущие исследования на этом уровне
  • Пономарёва И. Н., Корнилова О. А., Лощилина Т. Е. Биология 10 класс. Базовый уровень. — 2-е изд., перераб. — М.: Вента-Граф, 2007. — С. 10—11, 217. — 224 с. — 15 000 экз. — ISBN 978-5-360-00429-5.
  • Коллектив авторов Института истории естествознания и техники АН СССР. Развитие концепции структурных уровней в биологии.. — М.: Наука, 1972. — 427 с. — 10 000 экз.
  • Пономарёва И. Н., Корнилова О. А., Лощилина Т. Е., Ижевский П. В. Биология 11 класс. Базовый уровень. — 2-е изд., перераб. — М.: Вента-Граф, 2007. — 240 с. — 25 000 экз. — ISBN 978-5-360-00237-6.
  • Пепеляева О. А., Сунцова И. В. Приложение 1 // Поурочные разработки по общей биологии: 9 класс. — М.: Вако, 2009. — С. 292—293. — 464 с. — (В помощь школьному учителю). — 10 000 экз. — ISBN 978-5-94665-822-5.

ru.wikipedia.org

Сайт учителей биологии МБОУ Лицей № 2 города Воронежа

Обмен веществ между организмом и окружающей средой

Организм человека, как и все живые организмы, существует как открытая система. Организм выделяет такие вещества, как вода, углекислый газ, минеральные соли и др. Одновременно с этим происходит выделение энергии из организма: она рассеивается в пространстве в виде тепла. Организм — это устойчивая система, поэтому потеря вещества восполняется постоянным его поглощением из окружающей среды — в виде пищевых продуктов, воды, вдыхаемого кислорода. Таким образом, через тело человека постоянно идет поток вещества и заключенной в нём энергии. Этот непрерывный поток является одним из важнейших свойств живых организмов и называется обмен веществ и энергии, или метаболизм.

Питательные вещества, поступающие в организм, богаты энергией. Они преобразуются в организме в вещества, бедные энергией. Высвобождающаяся при этом энергия используется для нужд организма (для поддержания его активности, роста, развития и др.), а также рассеивается в виде тепловой энергии.

Обмен веществ и энергии непрерывно происходит и в пределах нашего организма. В разных органах обмен веществ идет с разной интенсивностью. Так, к концу месяца в печени не остается ни одного атома из тех, которые ее составляли вначале, все они заменяются на новые. Вот и подсчитайте, сколько раз печень обновлялась за прожитые вами годы. Эти процессы идут в каждой клетке, в клетку поступают питательные вещества, кислород, вода, минеральные соли, витамины. Часть этих веществ идет на рост и развитие, а часть органических веществ используется для биологического окисления и получения энергии для работы мышц, поддержания температуры тела, создания новых веществ, проведения нервных сигналов.

Белки, жиры и углеводы, которые мы получаем с растительной и животной пищей, не могут быть усвоены в том виде, в каком они к нам поступили. Если в кровь человека попадут чужеродные белковые или другие крупные молекулы, они или погубят организм, или будут уничтожены его иммунной системой. Вот почему в органах пищеварения пищевые белки, жиры и сложные углеводы распадаются на составные части, из которых могут быть созданы другие белки, жиры и углеводы, свойственные данному организму и никакому другому.

В кишечнике под действием ферментов белки распадаются на аминокислоты, жиры – на глицерин и жирные кислоты, а сложные углеводы – на глюкозу и другие простые сахара. Пищевые аминокислоты, глицерин и жирные кислоты, глюкоза всасываются ворсинками и транспортируются к клеткам.

Жизнедеятельность клеток осуществляется за счет энергии распада и окисления органических веществ. Для этого клеткам необходим кислород. Кровь доставляет его из органов дыхания, она же уносит продукты распада.

Переваривание пищи и доставка питательных веществ и кислорода к клеткам – это подготовительная, а удаление продуктов распада – заключительная стадия обмена. Основные же его стадии происходят в клетках.

Обмен веществ — это единый процесс, осуществляющийся на уровне целостного организма. Он складывается из процессов, происходящих в каждой отдельной клетке. Всё многообразие превращений веществ в организме происходит либо с освобождением энергии, либо с затратой энергии. Поэтому общий процесс метаболизма имеет две стороны, неразрывно связанные между собой:

  • пластический обмен, или анаболизм (греч. anabolē — подъём), или ассимиляция (лат. assimilatio — слияние, усвоение), — процессы синтеза веществ, которые требуют затрат энергии;
  • энергетический обмен, или катаболизм (греч. katabole — разрушение), или диссимиляция (лат. dissimilatio — разложение, отчуждение), — процессы расщепления веществ, которые протекают с выделением энергии.

Пластический обмен.  В переводе с греческого языка слово plastike означает "лепка из глины и других материалов". Этот образ был выбран биологами потому, что он довольно точно отражает существо дела. Поступающие в клетки питательные вещества можно сравнить с кирпичиками, из которых "лепятся" молекулы белков, жиров и углеводов, свойственные определенным клеткам человеческого тела. Они идут на строительство утраченных частей клеток, на создание новых клеток и межклеточного вещества. За счет пластического обмена происходят рост, деление и развитие каждой клетки и всего организма в целом.

Исходными веществами и источником энергии для реакций анаболизма в организме человека являются высокоэнергетические питательные вещества (белки, жиры, углеводы). В результате пластического обмена происходят постоянное самообновление, рост и развитие организма.

Энергетический обмен. Для создания новых веществ необходимо затрачивать энергию. Она добывается путем распада и окисления части органических веществ, поступающих в клетку.

Органические вещества создают растения, используя энергию солнечного света. Из воды и углекислого газа они получают глюкозу и выделяют кислород. Попав в клетки человеческого тела, глюкоза окисляется и распадается на воду и углекислый газ, а освободившаяся энергия используется для жизнедеятельности клетки: создания новых веществ, сокращения мышц, проведения нервного возбуждения. Примерно половина этой энергии превращается в тепловую и тратится на поддержание температуры тела. Чем больше человек тратит энергии, тем больше распадается органических веществ в его организме. Мы дышим более интенсивно, когда работаем, наш организм нуждается в большем количестве пищи, чтобы компенсировать свои энергетические траты и потерю органических веществ, подвергшихся биологическому окислению. Вот почему спортсмен после марафонского бега обычно теряет 2-3 кг массы тела.

Таким образом, процессы пластического и энергетического обмена веществ тесно взаимосвязаны и происходят одновременно. Это две стороны единого процесса обмена веществ и энергии в организме.

Различают подготовительную, клеточную и заключительную стадии обмена. На подготовительной стадии происходит переваривание пищи и доставка питательных веществ и кислорода к тканям и клеткам. На клеточной стадии в результате пластического обмена создаются новые клеточные белки, жиры и углеводы и структуры клетки и межклеточного вещества; в ходе энергетического обмена происходит аккумуляция энергии, которая потом используется для энергетических нужд организма (создание новых веществ, мышечное движение и др.). На заключительной стадии обмена продукты расщепления – углекислый газ, аммиак, мочевина, вода – попадают в кровь и выводятся из организма легкими и почками.

< Предыдущая страница "Заболевания органов пищеварения"

Следующая страница "Обмен белков" >

biolicey2vrn.ru

Ответы Mail.ru: Уровни организации живого?

Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации. Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика. Клеточный уровень- это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов) . Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология. Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией. Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология. Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией) , физиологией, генетикой, палеонтологией. Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов. Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций. На этом уровне изучаются генетические и экологические особенности популяций, элементарные эволюционные факторы и их влияние на генофонд (микроэволюция) , проблема сохранения видов. Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций, динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология. Биосферный уровень - организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии. Это самый высокий уровень, без чего невозможна жизнедеятельность организмов, обитающих на Земле.

Все те же уровни, что и у мёртвых, только чуточку по-живее !

Все еще надеетесь кого-то организовать? Бросьте это незнадежное дело.

touch.otvet.mail.ru

Перечислите уровни организации живой природы

Молекулярный. Любая живая система, как бы сложно она ни была организована, состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также других важных органических веществ. С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др. Клеточный. Клетка - структурная и функциональная единица, а также единица развития всех живых организмов, обитающих на Земле. На клеточном уровне сопрягаются передача информации и превращение веществ и энергии. Организменный. Элементарной единицей организменного уровня служит особь, которая рассматривается в развитии - от момента зарождения до прекращения существования - как живая система. На этом уровне возникают системы органов, специализированных для выполнения различных функций. Популяционно-видовой. Совокупность организмов одного и того же вида, объединенная общим местом обитания, в которой создается популяция - надорганизменная система. В этой системе осуществляются элементарные эволюционные преобразования - процесс микроэволгоции. Биогеоценотический. Биогеоценоз - совокупность организмов разных видов 'и различной сложности организации с факторами среды их обитания. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные, устойчивые сообщества. Биосферный. Биосфера - совокупность всех биогеоценозов, система, охватывающая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.

1 Молекулярный, 2 Клеточный, 3 Тканевый, 4 Органный, 5 Организменный, 6 Видовой, 7 Биоценотический, 8 Биосферный.

1. Молекулярный, наиболее древний уровень структуры живой природы, граничащий с неживой природой. Изучение химического состава и строения молекул сложных органических веществ, входящих в состав клетки (белков, нуклеиновых кислот и др.) . Выявление роли нуклеиновых кислот в хранении наследственной информации, белков — в образовании клеточных структур, в процессах жизнедеятельности клетки. 2. Клеточный уровень жизни, включающий в себя молекулярный. Сложное строение клетки, наличие в ней оболочки, плазматической мембраны, ядра, цитоплазмы и других органоидов; присущие ей разнообразные процессы жизнедеятельности: рост, развитие, деление, обмен веществ. Сходное строение и жизнедеятельность клеток организмов растений, животных, грибов и бактерий. 3. Организменный уровень, включающий в себя молекулярный и клеточный. Сходство организмов разных царств живой природы — их клеточное строение, сходное строение клеток и протекающих в них процессов жизнедеятельности. Различия между растениями и животными в строении и способах питания. Связь организмов со средой обитания, их приспособленность к ней. 6. Популяционно-видовой — надорганизменный уровень жизни, включающий в себя организменный уровень. Пищевые, территориальные и родственные связи между особями вида, связь их с факторами неживой природы. Приуроченность экологических закономерностей и эволюционных процессов к этому уровню. 7. Биоценотический уровень жизни, представляющий собой сообщество особей разных видов на определенной территории, связанных различными внутривидовыми и межвидовыми взаимоотношениями, а также факторами неживой природы. Проявление на этом уровне экологических закономерностей и эволюционных процессов. 8. Биосферный — высший уровень организации жизни. Биосфера — биологическая оболочка Земли, совокупность всего живого населения. Круговорот веществ и превращение энергии в биосфере — основа ее целостности, роль живых организмов в нем. Роль солнечной энергии в круговов хранении наследственной информации, белков — в образовании клеточных структур, в процессах жизнедеятельности клетки.

touch.otvet.mail.ru

перечислить уровни организации живой материи от организма и выше

Уровни организации живой материи (по возрастающей) 1.МОЛЕКУЛЯРНЫЙ. Любая живая система, как бы сложно она ни была организована, состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также других важных органических веществ. С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др. 2. КЛЕТОЧНЫЙ. Клетка - структурная и функциональная единица, а также единица развития всех живых организмов, обитающих на Земле. На клеточном уровне сопрягаются передача информации и превращение веществ и энергии. 3. ОРГАНИЗМЕННЫЙ. Элементарной единицей организменного уровня служит особь, которая рассматривается в развитии - от момента зарождения до прекращения существования - как живая система. На этом уровне возникают системы органов, специализированных для выполнения различных функций. 4. ПОПУЛЯЦИОННО-ВИДОВОЙ. Совокупность организмов одного и того же вида, объединенная общим местом обитания, в которой создается популяция - надорганизменная система. В этой системе осуществляются элементарные эволюционные преобразования - процесс микроэволгоции. 5. БИОГЕОЦЕНОТИЧЕСКИЙ. Биогеоценоз - совокупность организмов разных видов 'и различной сложности организации с факторами среды их обитания. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные, устойчивые сообщества. 6. БИОСФЕРНЫЙ. Биосфера - совокупность всех биогеоценозов, система, охватывающая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.

биологию учишь или проверяешь дом. задание? организменный популяционно-видовой биогеоценотический (зкосистемный) биосферный

touch.otvet.mail.ru

что такое обмен веществ и энергии?

Метаболи&#769;зм (от греч. &#956;&#949;&#964;&#945;&#946;&#959;&#955;&#942; — «превращение, изменение») , или обмен веществ — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды. Метаболизм обычно делят на две стадии: в ходе катаболизма сложные органические вещества деградируют до более простых; в процессах анаболизма с затратами энергии синтезируются такие вещества, как белки, сахара, липиды и нуклеиновые кислоты. Обмен веществ происходит между клетками организма и межклеточной жидкостью, постоянство состава которой поддерживается кровообращением: за время прохождения крови в капиллярах через проницаемые стенки капилляров плазма крови 40 раз полностью обновляется с интерстициальной жидкостью. Серии химических реакций обмена веществ называют метаболическими путями, в них при участии ферментов одни биологически значимые молекулы последовательно превращаются в другие. Ферменты играют важную роль в метаболических процессах потому, что: действуют как биологические катализаторы и снижают энергию активации химической реакции; позволяют регулировать метаболические пути в ответ на изменения среды клетки или сигналы от других клеток. Особенности метаболизма влияют на то, будет ли пригодна определенная молекула для использования организмом в качестве источника энергии. Так, например, некоторые прокариоты используют сероводород в качестве источника энергии, однако этот газ ядовит для животных. [1] Скорость обмена веществ также влияет на количество пищи, необходимой для организма. Основные метаболические пути и их компоненты одинаковы для многих видов, что свидетельствует о единстве происхождения всех живых существ. [2] Например, некоторые карбоновые кислоты, являющиеся интермедиатами цикла трикарбоновых кислот присутствуют во всех организмах, начиная от бактерий и заканчивая многоклеточными организмами эукариот. [3] Сходства в обмене веществ, вероятно, связаны с высокой эффективностью метаболических путей, а также с их ранним появлением в истории эволюции. [4][5]

в организм поступают одни вещества (питание) и выводятся ненужные (выведение)

touch.otvet.mail.ru

Обмен веществ и превращение энергии. Значение обмена веществ в жизни человека?

Обмен веществ и энергии (метаболизм) осуществляется на всех уровнях организма: клеточном, тканевом и организменном. Он обеспечивает постоянство внутренней среды организма - гомеостаз - в непрерывно меняющихся условиях существования. В клетке протекают одновременно два процесса - это пластический обмен (анаболизм или ассимиляция) и энергетический обмен (фатаболизм или диссимиляция) . Пластический обмен - это совокупность реакций биосинтеза, или создание сложных молекул из простых. В клетке постоянно синтезируются белки из аминокислот, жиры из глицерина и жирных кислот, углеводы из моносахаридов, нуклеотиды из азотистых оснований и сахаров. Эти реакции идут с затратами энергии. Используемая энергия освобождается в ходе энергитического обмена. Энергетический обмен - это совокупность реакций расщепления сложных органических соединений до более простых молекул. Часть энергии, высвобождаемой при этом, идет на синтез богатых энергетическими связями молекул АТФ (аденозин-трифосфорной кислоты) . Расщепление органических веществ осуществляется в цитоплазме и митохондриях с участием кислорода. <a rel="nofollow" href="http://www.freesession.ru/estesstvennye/biologiya/39-anatomiya/100-obmen-veshhestv-i-prevrashhenie-energii-v-kletke.html" target="_blank" >Этапы энергетического обмена. </a> Организм может существовать лишь при условии постоянного притока энергии. Источником этой энергии являются питательные вещества. Способность организма принимать, переваривать и усваивать пищу, выделять ненужные продукты в широком смысле носит название обмена веществ. В результате обмена веществ организм получает энергию для своих жизненных процессов (энергетический обмен) и материал для построения и обновления клеток (пластические процессы) . В основе обмена веществ и энергии лежат ферментативные процессы двух типов, тесно связанные друг с другом и взаимообусловленные. Первый тип таких процессов называется ассимиляцией. При этом происходит усвоение веществ, поступающих с пищей, и синтез (построение) более сложных химических соединений из более простых. Второй тип ферментативных процессов называется диссимиляцией. Эти процессы направлены на расщепление, распад веществ, входящих в состав организма. Процессы превращения веществ сопровождаются образованием энергии. Только путем сохранения постоянства отношений между этими процессами осуществляется развитие организма и его самообновление. Все жизненные процессы связаны с расходом энергии. Энергия необходима для механической работы (сокращение мышц) , для осуществления осмотических (всасывание, фильтрация, выделение) , химических (процессы синтеза) и электрических (нервные импульсы) процессов в организме. Энергия в организме животного и человека образуется при расщеплении органических соединений (главным образом жиров и углеводов) , для которого необходимо присутствие витаминов и водных растворов минеральных солей. Все пищевые вещества по своему назначению можно условно разделить на пластические, энергетические и осуществляющие регуляторные функции. Основное место в ряду пластических веществ принадлежит белкам, хотя жиры, углеводы и минеральные вещества также принимают участие в пластических промессах. Процесс расщепления глюкозы — гликолиз — занимает одно из центральных мест в обмене веществ человека. За счет углеводов удовлетворяется потребность в энергии, необходимой для мышечной работы, деятельности мозга и др. Источником этой энергии служат также жиры и белки. К веществам, осуществляющим регуляторные функции, относятся в основном витамины и витаминоподобные вещества, которые регулируют и катализируют (ускоряют) процессы обмена. К ним же относятся некоторые минеральные вещества (кальций, фосфор, железо, калий и др.) , микроэлементы (кобальт, медь, йод, магний и др.) , ферменты и гормоны. <a rel="nofollow" href="http://doktorland.ru/diabet-1.html" target="_blank">http://doktorland.ru/diabet-1.html</a>

Обмен веществ и энергии (метаболизм) осуществляется на всех уровнях организма: клеточном, тканевом и организменном. Он обеспечивает постоянство внутренней среды организма - гомеостаз - в непрерывно меняющихся условиях существования. В клетке протекают одновременно два процесса - это пластический обмен (анаболизм или ассимиляция) и энергетический обмен (фатаболизм или диссимиляция) . Пластический обмен - это совокупность реакций биосинтеза, или создание сложных молекул из простых. В клетке постоянно синтезируются белки из аминокислот, жиры из глицерина и жирных кислот, углеводы из моносахаридов, нуклеотиды из азотистых оснований и сахаров. Эти реакции идут с затратами энергии. Используемая энергия освобождается в ходе энергитического обмена. Энергетический обмен - это совокупность реакций расщепления сложных органических соединений до более простых молекул. Часть энергии, высвобождаемой при этом, идет на синтез богатых энергетическими связями молекул АТФ (аденозин-трифосфорной кислоты) . Расщепление органических веществ осуществляется в цитоплазме и митохондриях с участием кислорода.

диссимиляция) . Пластический обмен - это совокупность реакций биосинтеза, или создание сложных молекул из простых. В клетке постоянно синтезируются белки из аминокислот, жиры из глицерина и жирных кислот, углеводы из моносахаридов, нуклеотиды из азотистых оснований и сахаров. Эти реакции идут с затратами энергии. Используемая энергия освобождается в ходе энергитического обмена. Энергетический обмен - это совокупность реакций расщепления сложных органических соединений до более простых молекул. Часть энергии, высвобождаемой при этом, идет на синтез богатых энергетическими связями молекул АТФ (аденозин-трифосфорной кислоты) . Расщепление органических веществ осуществляется в цитоплазме и митохондриях с участием кислорода.

в чем смысл жизни?

touch.otvet.mail.ru

Обмен веществ и энергии. | Биология

Для различных процессов организма: образование веществ, мышечная работа, поддержание постоянной температуры тела необходима энергия. Основным источником энергии является энергия химических связей молекул органических соединений, получаемых с пищей углеводов, жиров, белков. При распаде органических веществ освобождается химическая энергия, которая преобразуется в другие виды энергии – электрическую (энергия нервного импульса при работе мозга, нервных клеток), тепловую (поддержание постоянной температуры тела), механическую (мышечные сокращения), химическую (биосинтез свойственных данному организму веществ). В нашем организме действует закон сохранения энергии: энергия не возникает и не исчезает, она только преобразуется, видоизменяется из одного вида в другой.

Затраченная организмом энергия восполняется питанием. Интенсивность энергетического обмена зависит от условий, в которых находится организм, пола, времени года, возраста, состояния здоровья и других факторов.

Обмен веществ – сложная цепь превращений веществ в организме, начиная с момента их поступления из внешней среды и кончая удалением продуктов распада. Клетки всех тканей организма образованы, главным образом, из органических веществ (углеводов, жиров, белков). Они являются также единственным источником энергии в организме. По сути дела, жизнь обусловлена свойствами именно этих веществ. В состав белков, помимо углерода, водорода, кислорода, серы и иногда и фосфора, обязательно входит азот, которого нет в углеводах и жирах. Все растительные и животные белки состоят из аминокислот, которых насчитывается около двадцати. Из различных комбинаций этих аминокислот образуются белковые молекулы разного строения. Белки, поступающие с пищей, под влиянием пищеварительных соков расщепляются на отдельные аминокислоты. Аминокислоты всасываются ворсинками тонкой кишки и с кровью доставляются клетками организма. Проникшие через мембрану клеток аминокислоты при участии нуклеиновых кислот используются для образования в рибосомах свойственных этим клеткам белков. Некоторые белки используются как ферменты. Белки организма человека по структуре отличаются от белков животных и растений.

В клетках белки используются для построения цитоплазмы и органоидов, поэтому потребность в белковой пище особенно велика у молодого растущего организма, когда клетки размножаются и увеличивается общая масса тканей.

Обмен белков

Белки  расщепление до аминокислот  синтез белков, свойственных организму  расщепление до углекислого газа и воды  удаление через почки, легкие и кожу

Обмен углеводов

Углеводы входят в состав клеток и являются основным источником энергии в организме. В растительной пище углеводы представлены главным образом в виде крахмала и тростникового сахара. Под влиянием ферментов пищеварительных соков углеводы расщепляются до глюкозы, которая в ворсинках кишечника всасывается в кровь, поступает с ней в печень и превращается в животный крахмал – гликоген. В печени откладываются основные запасы углеводов в организме. Во время длительного голодания при снижении уровня глюкозы вырабатывается в кровяное русло. Напротив, при избытке глюкозы в крови она быстро превращается в печени в гликоген. Таким образом, благодаря регуляции, поддерживается постоянный уровень глюкозы в крови.

Сложные углеводы  расщепление до простых углеводов  всасывание в кровь  избыток превращается в гликоген  откладывается в печени и мышцах и выводится через почки

Обмен жиров

Жиры входят в состав клеток. Большая часть жиров используется как источник энергии. Жиры разных животных, как и жиры разных органов, различаются по химическому составу и свойствам. В кишечнике жиры под влиянием пищеварительных соков распадаются на глицерин и жирные кислоты. Они попадают в кишечнике ворсинки. Здесь они вновь соединяются друг с другом и образуют новые жиры, свойственные только организму человек. Эти жиры попадают в лимфу и далее разносятся кровью по всем органам и тканям. Часть жиров идет на построение мембран клеток. Часть жиров откладывается в запас. Отложение жира происходит в подкожной клетчатке, в области почек и в других листах. Эти запасы используются при недостатке питания.

Жиры пищи  расщепление до глицерина и жирных кислот  лимфа  кровь  отложение в запас под кожей и выводится через почки и кожу

Обмен воды и минеральных солей также чрезвычайно важен для организма. Вода необходима для растворения большинства химических соединений, находящихся в организме. При участии воды и минеральных солей происходят важнейшие физико-химические процессы в клетке и ткани. Переработка различных питательных веществ и выделение продуктов их распада возможны только при достаточном количестве воды в организме. Вода составляет около 65 % массы тела. Особенно много ее содержится в плазме крови, лимфе, пищеварительных соках.

Значительное количество воды человек выделяет с мочой, потом, а также в виде водяных паров, содержащихся в выдыхаемом воздухе. Эти потери должны восполняться ежедневным введением в организм 1,5–2 л. воды. Половина ее поступает с пищей, половина в виде молока, чая, сока. Однако это количество воды зависит от выполняемой человеком работы и температуры воздуха. Прекращение поступления воды в организм в течение нескольких суток вызывает нарушения и может привести к смерти.

Минеральные соли входят в состав самих клеток. Кальций и фосфор нужны для построения костей, некоторые соли необходимы для осуществления обмена веществ, связанного с выведением из клетки и поступлением в нее различных химических соединений. Присутствие солей кальция – это непременное условие свертывания крови, соли натрия и калия требуются для работы мышечных и нервных клеток. Соли железа участвуют в переносе кислорода, соединения йода для нормальной работы щитовидной железы. При обычном питании организм, как правило, получает необходимое количество минеральных солей, за исключением хлорида натрия, поэтому свою пищу досаливаем.

В энергетическом обмене главная роль принадлежит углеводам. Хотя при распаде углеводов выделяется меньше энергии, чем при распаде жиров, но углеводы быстрее расщепляются в организме с образованием энергии. Жиры расщепляются медленнее, жировой обмен регулируется нервной системой и железами внутренней секреции.

Большая часть энергии, которая образуется в организме, превращается в тепловую энергию.

В том случае, когда в пище не хватает какого-либо органического соединения, может происходить превращение одних органических веществ в другие. Например, белки, они могут превращаться в жиры и углеводы. При обильном питании углеводами в организме могут образовываться жиры. Недостаток белков в пище является невосполнимым, так как они образуются только из аминокислот. Поэтому белковое голодание наиболее опасно для организма.

ebiology.ru

Что понимают под терминами "основной обмен" и "общий обмен"? Основной и общий обмен.

Общий обмен - обмен веществ и энергии, что происходит в организме животного при обычных условиях существования. Он зависит от многих внутренних и внешних факторов. Нет почти ни одного фактора, которые бы не влияли через нервную систему на обмен веществ. Чтобы сравнить интенсивность обмена веществ у животных при различных физиологических состояниях, необходимо определить энергетические затраты организма при четко определенных условиях. Основной обмен - это уровень энергетических затрат организма при полном покое, натощак, при температуре окружающей среды. Энергия при этом обмене тратится на функции важных систем (кровообращения, дыхания, пищеварения, деятельности нервной системы и желез внутренней и внешней секреции и др.). Энергия, которая расходуется в организме животного для образования различных видов продукции, называется продуктивным обменом. Основной обмен определяют у животных при оптимальной для определенного вида животных температуре, в состоянии покоя и при свободном от корма кишечника.

<a rel="nofollow" href="http://silgosp.com/books/book-7/chapter-440/" target="_blank">http://silgosp.com/books/book-7/chapter-440/</a>

Основным обменом называется количество энергии, которое тратит организм при полном мышечном покое, через 12—14 часов после приема пищи и при окружающей температуре 20—22 °С. Основной обмен поддерживает жизнь организма на самом низком уровне деятельности нервной системы, сердца, дыхательного аппарата, пищеварения, желез внутренней секреции, выделительных процессов, покоя скелетных мышц. Даже в условиях полного покоя в клетках и тканях не прекращается обмен веществ — основа жизни организма. Показателем основного обмена является теплопроизводство в ккал в 1 ч на 1 кг веса тела и равен 1 ккал. Основной обмен представляет собой наименьший уровень затрат энергии на поддержание основных процессов жизни в клетках, тканях и органах, на сокращения дыхательной мускулатуры, сердца, деятельность желез. При определении основного обмена следует учесть, что больше всего тепловой энергии освобождается при окислительных процессах в мускулатуре. Общий обмен веществ — происходит в обычных условиях жизни. Он значительно выше основного обмена и зависит главным образом от деятельности скелетных мышц, а также увеличения деятельности внутренних органов. Килокалории, расходуемые при этом сверх основного обмена, называются моторными калориями. Чем интенсивнее мышечная деятельность, тем больше моторных калорий и тем выше общий обмен веществ. При умственном труде общий обмен веществ увеличивается незначительно — на 2—3 %, а если умственный труд сопровождается мышечной деятельностью — на 10—20 %. Общий обмен - обмен веществ и энергии, что происходит в организме животного при обычных условиях существования. Он зависит от многих внутренних и внешних факторов. Нет почти ни одного фактора, которые бы не влияли через нервную систему на обмен веществ. Чтобы сравнить интенсивность обмена веществ у животных при различных физиологических состояниях, необходимо определить энергетические затраты организма при четко определенных условиях.

touch.otvet.mail.ru


Смотрите также