Мембрана состоит из чего


Клеточная мембрана: ее строение и функции

Что такое клеточная мембрана
  • История исследования клеточной мембраны

  • Свойства и функции клеточной мембраны

  • Строение клеточной мембраны

  • Клеточная мембрана, видео
  • Ни для кого не секрет, что все живые существа на нашей планете состоят их клеток, этих бесчисленных «атомов» органической материи. Клетки же в свою очередь окружены специальной защитной оболочкой – мембраной, играющей очень важную роль в жизнедеятельности клетки, причем функции клеточной мембраны не ограничиваются только лишь защитой клетки, а представляют собой сложнейший механизм, участвующий в размножении, питании, регенерации клетки.

    Что такое клеточная мембрана

    Само слово «мембрана» с латыни переводится как «пленка», хотя мембрана представляет собой не просто своего роду пленку, в которую обернута клетка, а совокупность двух пленок, соединенных между собой и обладающих различными свойствами. На самом деле клеточная мембрана это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой, так звучит академическое определение того что, представляет собой клеточная мембрана.

    Значение мембраны просто огромно, ведь она не просто отделяет одну клетку от другой, но и обеспечивает взаимодействие клетки, как с другими клетками, так и окружающей средой.

    История исследования клеточной мембраны

    Важный вклад в исследование клеточной мембраны был сделан двумя немецкими учеными Гортером и Гренделем в далеком 1925 году. Именно тогда им удалось провести сложный биологический эксперимент над красными кровяными тельцами – эритроцитами, в ходе которых ученые получили так званые «тени», пустые оболочки эритроцитов, которые сложили в одну стопку и измерили площадь поверхности, а также вычислили количество липидов в них. На основании полученного количества липидов ученые пришли к выводу, что их как раз хватаем на двойной слой клеточной мембраны.

    В 1935 году еще одна пара исследователей клеточной мембраны, на этот раз американцы Даниэль и Доусон после целой серии долгих экспериментов установили содержание белка в клеточной мембране. Иначе никак нельзя было объяснить, почему мембрана обладает таким высоким показателем поверхностного натяжения. Ученые остроумно представили модель клеточной мембраны в виде сэндвича, в котором роль хлеба играют однородные липидо-белковые слои, а между ними вместо масла – пустота.

    В 1950 году с появлением электронного микроскопа теорию Даниэля и Доусона удалось подтвердить уже практическими наблюдениями – на микрофотографиях клеточной мембраны были отчетливо видны слои из липидных и белковых головок и также пустое пространство между ними.

    В 1960 году американский биолог Дж. Робертсон разработал теорию о трехслойном строении клеточных мембран, которая долгое время считалась единственной верной, но с дальнейшим развитием науки, стали появляться сомнения в ее непогрешимости. Так, например, с точки зрения термодинамики клеткам было бы сложно и трудозатратно транспортировать необходимые полезные вещества через весь «сэндвич»

    И только в 1972 году американские биологи С. Сингер и Г. Николсон смогли объяснить нестыковки теории Робертсона с помощью новой жидкостно-мозаичной модели клеточной мембраны. В частности они установили что клеточная мембрана не однородна по своему составу, более того – ассиметрична и наполнена жидкостью. К тому же клетки пребывают в постоянном движении. А пресловутые белки, которые входят в состав клеточной мембраны имеют разные строения и функции.

    Рисунок клеточной мембраны.

    Свойства и функции клеточной мембраны

    Теперь давайте разберем, какие функции выполняет клеточная мембрана:

    Барьерная функция клеточной мембраны – мембрана как самый настоящий пограничник, стоит на страже границ клетки, задерживая, не пропуская вредные или попросту неподходящие молекулы

    Транспортная функция клеточной мембраны – мембрана является не только пограничником у ворот клетки, но и своеобразным таможенным пропускным пунктом, через нее постоянно проходит обмен полезными веществами с другими клетками и окружающей средой.

    Матричная функция – именно клеточная мембрана определяет расположение органоидов клетки относительно друг друга, регулирует взаимодействие между ними.

    Механическая функция – отвечает за ограничение одной клетки от другой и параллельно за правильно соединение клеток друг с другом, за формирование их в однородную ткань.

    Защитная функция клеточной мембраны является основой для построения защитного щита клетки. В природе примером этой функции может быть твердая древесина, плотная кожура, защитный панцирь у черепахи, все это благодаря защитной функции мембраны.

    Энергетическая функция – фотосинтез и клеточное дыхание были бы невозможны без участия белка, содержащегося в клеточной мембране. Именно через белковые каналы происходит важный клеточный энергообмен, в этом заключаются самые главные функции белка в клеточной мембране.

    Рецепторная функция – и опять возвращаемся к белкам мембраны, помимо собственно энергообмена они обладают еще одной очень важной функцией – они служат рецепторами клеточной мембраны, благодаря которым клетка получает сигнал от гормонов и нейромедиаторов. Все это необходимо для нормального течения гормональных процессов и проведения нервного импульса.

    Ферментативная функция – еще одна важная функция, осуществляемая некоторыми белками клетки. Например, благодаря этой функции в эпителии кишечника происходит синтез пищеварительных ферментов.

    Также помимо всего этого через клеточную мембрану осуществляется клеточный обмен, который может проходить тремя разными реакциями:

    • Фагоцитоз – это клеточный обмен, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают различные питательные вещества.
    • Пиноцитоз – представляет собой процесс захвата мембраной клетки, соприкасающиеся с ней молекулы жидкости. Для этого на поверхности мембраны образуются специальные усики, которые как будто окружают каплю жидкости, образуя пузырек, которые впоследствии «проглатывается» мембраной.
    • Экзоцитоз – представляет собой обратный процесс, когда клетка через мембрану выделяет секреторную функциональную жидкость на поверхность.

    Строение клеточной мембраны

    В клеточной мембране имеются липиды трех классов:

    • фосфолипиды (представляются собой комбинацию жиров и фосфора),
    • гликолипиды (представляют собой комбинацию жиров и углеводов),
    • холестерол.

    Фосфолипиды и гликолипиды в свою очередь состоят из гидрофильной головки, в которую отходят два длинных гидрофобных хвостика. Холестерол же занимает пространство между этими хвостиками, не давая им изгибаться, все это в некоторых случаях делает мембрану определенных клеток весьма жесткой. Помимо всего этого молекулы холестерола упорядочивают структуру клеточной мембраны.

    Но как бы там ни было, а самой важной частью строения клеточной мембраны является белок, точнее разные белки, играющие различные важные роли. Несмотря на разнообразие белков содержащихся в мембране есть нечто, что их объединяет – вокруг всех белков мембраны расположены аннулярные липиды. Аннулярные липиды – это особые структурированные жиры, которые служат своеобразной защитной оболочкой для белков, без которой они бы попросту не работали.

    Структура клеточной мембраны имеет три слоя: основу клеточной мембраны составляет однородный жидкий билипидный слой. Белки же покрывают его с обеих сторон наподобие мозаики. Именно белки помимо описанных выше функций также играют роль своеобразных каналов, по которым сквозь мембрану проходят вещества, неспособные проникнуть через жидкий слой мембраны. К таким относятся, например, ионы калия и натрия, для их проникновения через мембрану природой предусмотрены специальные ионные каналы клеточных мембран. Иными словами белки обеспечивают проницаемость клеточных мембран.

    Если смотреть на клеточную мембрану через микроскоп, мы увидим слой липидов, образованный маленькими шарообразными молекулами по которому плавают словно по морю белки. Теперь вы знаете, какие вещества входят в состав клеточной мембраны.

    Клеточная мембрана, видео

    И в завершение образовательное видео о клеточной мембране.


    Автор: Павел Чайка, главный редактор журнала Познавайка

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected] или в Фейсбук, с уважением автор.

    Эта статья доступна на английском языке – Cell Membrane.

    www.poznavayka.org

    Из чего состоит плазматическая мембрана? — журнал "Рутвет"

    1. История открытия цитолеммы
    2. Строение и функции плазматической мембраны
    3. Плазматическая мембрана животных клеток

    Плазматическая мембрана (другие названия – плазмалемма, цитолемма, клеточная мембрана) – это часть клетки, один из ее органоидов, который располагается вокруг цитоплазмы, таким образом, защищая ее от внешнего воздействия и контролируя те вещества, которые собираются проникнуть внутрь. Строение плазматической мембраны представляет собой сложную структуру, образованную белками и липидами, взаимодействующими между собой и обеспечивающими определенные жизненно важные функции клетки.

    История открытия цитолеммы

    Как ни странно, но такой важный органоид был открыт учеными лишь в начале прошлого столетия. В процессе его открытия можно выделить следующие этапы:

    1. В 1925 году два немецких биолога И. Гортер и А. Грендель, проведя обширное исследование эритроцитов (клеток крови), смогли получить их оболочку. Это было первым шагом к пониманию строения плазмалеммы. Было выяснено, что ее структура представляет собой двойной сплошной слой. Причем, в силу неразвитости технологий, немецкие ученые допустили две серьезные ошибки, которые существенно корректировали значение результатов, одна в сторону увеличения, а другая, наоборот, уменьшения. И благодаря этому результаты получились поразительно точными, даже сверхточными для того времени.
    2. Спустя десятилетие другие исследователи, Доусон и Даниэлли, получили результаты, говорящие о том, что структура клеточной мембраны включает белки, а не только липиды. Они представили макет модели, напоминавший бутерброд, с двух сторон хлеб – белково-липидные слои, а внутри вместо начинки пустота.
    3. В середине прошлого века, с открытием электронного микроскопа, ученые смогли рассмотреть цитолемму клеток и пришли к выводу, что теория Доусона и Даниэлли была верной, плазмалемма действительно представляла собой два слоя, а между ними прозрачное пространство.
    4. В 1960 году была разработана теория, согласно которой плазмалемма состоит из трех слоев. Автором теории выступал микробиолог из Америки Д. Робертсон. Однако, данная теория многократно подвергалась критике со стороны научного сообщества, ведь такое строение крайне неудобно с точки зрения проводимости веществ. Не совсем было понятно, чем же тогда отличаются клеточная мембрана и клеточная стенка.
    5. Наконец, в 1972 году учеными Сингером и Николсоном была представлена другая модель плазмалеммы. Она показывала, что плазмалемма наполнена жидкостью, а также асимметрична и пребывает в постоянном движении.

    Смотрите видео о строении плазматической мембраны клетки.

    Строение и функции плазматической мембраны

    Выше было рассмотрено то, как путем долгих исследований, занявших практически половину века, было открыто точное строение плазмалеммы. Так из чего же состоит плазматическая мембрана?

    Можно выделить два основных типа веществ, составляющих структуру плазмалеммы:

    • три вида липидов: гликолипиды, фосфолипиды, холестерол;
    • белки.

    Липиды располагаются широким слоем посередине, а с обеих сторон от него прикреплены белки. Белковый слой не является сплошным, а, скорее, больше похож на мозаику. Белки плазматической мембране нужны для того, чтобы внутрь могли проникнуть гидрофобные вещества, необходимые для жизнедеятельности, но неспособные самостоятельно преодолеть билипидный слой.

    Функции цитолеммы заключаются в следующем:

    1. Защита внутренних органоидов от механического воздействия и давления. Клеточная мембрана растения подобную функцию не выполняет, так как у растений присутствует плотная клеточная стенка.
    2. Отделение молекул, которые должны попасть внутрь, от тех, которым по определенным причинам нельзя проникать в клетку.
    3. Способствует взаимодействию со внешней средой, помогает проникать внутрь питательным веществам, транспортирует наружу переработанные вещества.
    4. Принятие сигналов (импульсов) от других клеток, говорящих о состоянии внешней среды.
    5. Определение с помощью специальных рецепторов вида других клеток для взаимодействия с ними. Подобное взаимодействие возможно благодаря тому, что каждая цитолемма уникальна, у каждой из них своеобразная конфигурация белков.

    Читайте о том, какие функции выполняет цитоплазма.
    А также описание цитоплазмы в растительной и животной клетке.

    Плазматическая мембрана животных клеток

    Клетки всех живых существ устроены примерно одинаково, обладают схожими органоидами, выполняющими практически идентичные функции. У животных тоже есть клеточная мембрана, но она обладает некоторыми особенностями, не свойственными, к примеру, растениям или одноклеточным.

    Клеточная мембрана животных также состоит из трех слоев, билипидного внутреннего слоя и двух белковых слоев снаружи. Отличие от цитолеммы растения заключается в том, что у животных отсутствует клеточная стенка.

    Как известно, плазматическая мембрана и клеточная стенка это не одно и то же. Клеточная стенка, как правило, располагается вокруг плазмалеммы, принимая на себя защитную функцию, регулируя давление и ограждая от повреждений цитоплазму. Плазматическая мембрана есть у животных, а вот развитой стенки нет. Поэтому защитную функцию вынужден выполнять рассматриваемый органоид, тем самым увеличивая степень своей важности для организма.

    В целом же, клеточная мембрана, ее строение, которое было рассмотрено выше, играют очень большую роль. Наиболее важной функцией из рассмотренных в масштабах всего организма считается проведение веществ внутрь. Благодаря этой способности цитолеммы, организм может получать необходимые элементы. Специальные каналы, которые пронизывают цитолемму, служат именно для транспортировки веществ. Если эти каналы по каким-либо причинам потеряют тонус, не смогут выполнять свои функции, клетка начнет гибнуть. Выяснив это, ученые совершили прорыв в медицине, установили, как можно лечить или избегать множества заболеваний, а также то, каким именно способом происходит обмен клетки с внешней средой.

    А какие еще интересные факты о строении или функционировании плазматической мембраны знаете вы? Делитесь своими знаниями в комментариях! А также смотрите видео о плазматической мембране в животной клетке.

    rutvet.ru

    Из чего сделана мембрана, или как работают мембранные ткани

    Мембрана – это тонкая пленка из полимерных материалов, которая напаивается на основную ткань, используемую для пошива одежды и обуви. Современные пленки-мембраны бывают двух видов: 

     

    • Микропористые – наиболее популярные. Такие мембраны имеют миллиарды микроскопических отверстий – пор. Они слишком малы, чтобы пропускать капли воды, но достаточно велики, чтобы сквозь них свободно проходил водяной пар – та влага, которая испаряется с кожи. Благодаря этим отверстиям мембрана приобретает свои свойства: способность защищать от воды и при этом «дышать», то есть выпускать наружу испарения тела. 
    • Беспоровые. Они состоят из двух слоев волокон с разными физическими свойствами: верхний слой отталкивает влагу, нижний поглощает водяной пар и выводит его в окружающую среду. Беспоровые мембраны прочнее микропористых, но уступают им по паропроницаемости. 


    Что касается ткани-основы, то чаще всего это синтетические материалы – полиэстер, нейлон и другие. Мембрана может ламинироваться практически на любой материал, вплоть до денима, но современная синтетика все-таки подходит лучше всего. 
    По технологии изготовления мембранные ткани делятся на два основных типа:

     

    1. Двухслойные (2L). Такая мембрана, напаянная на ткань, защищена с внутренней стороны подкладкой одежды. Это самый распространенный и доступный вариант. 
    2. Трехслойные (3L). Поверх такой мембраны нанесен специальный защитный слой, который предохраняет ее от повреждений при интенсивном трении об подкладку. Этот вариант надежнее, но существенно дороже, поэтому используется в основном для профессионального и экстремального снаряжения. 


    Выбирая одежду из мембранной ткани, нужно хотя бы приблизительно представлять себе, при каких условиях вы будете использовать вещь. Так вы сможете подобрать мембрану с оптимальным соотношением водостойкости и паропроницаемости

    Это соотношение обозначается цифрами наподобие 5.000/10.000, где первое – водостойкость, второе – паропроницаемость. От первого показателя зависит, насколько сильные и продолжительные осадки выдержит одежда, от второго – степень физической активности, при которой мембрана будет справляться с отведением влаги от тела, – ведь чем активнее вы двигаетесь, тем сильнее потеете.

    Рассмотрим эти показатели.

    Водостойкость: 

    • 3.000 – небольшой дождь в течение непродолжительного времени
    • 5.000 – 7.000– дождь средней силы
    • 10.000 – 15.000 – сильный длительный ливень, мокрый снег
    • 20.000 – шторм. Мембраны с таким показателем водостойкости используются для экстремальных походов и яхтенной одежды. 

    Паропроницаемость:

    • 3.000 – низкая активность (ходьба пешком в спокойном темпе)
    • 5.000 – 7.000 – средняя активность (ходьба по пересеченной местности, бег трусцой)
    • 10.000 – 15.000 – высокая активность (горные лыжи и другие подвижные виды спорта)

    Внимание: типичное заблуждение

    Важно понимать, что мембрана не защищает от холода. Ее смысл – в защите от дождя и отведении пота при физической активности. Мембранная одежда не согреет вас в холодную погоду, и при низких температурах обязательно потребуется дополнительное утепление. 

    Почему мембранные вещи могут промокать?

    Если ваша мембранная куртка или обувь все-таки промокли, это не означает, что вещь некачественная. Причины могут быть следующие.

    • Характеристики мембраны не соответствуют силе и длительности осадков, или вы буквально находитесь в воде. Водостойкость не равна водонепроницаемости: если много часов ходить в мембранной обуви по болоту или талому снегу, она рано или поздно промокнет. Если вы в прямом смысле сидите в луже (так бывает, например, в водных походах), через какое-то время ваши мембранные брюки начнут пропускать воду. 
    • Вы ощущаете себя «взмокшим», хотя паропроницаемость мембраны подобрана верно. Так бывает, когда влажность окружающего воздуха приближается к 90-100%. Увы, в мембрану не встроен механизм принудительного отвода водяного пара, она работает за счет простой физической разницы в концентрации влаги внутри одежды и снаружи: отводит испарения туда, где влажность ниже. 

    Можно считать это недостатками мембранной одежды и обуви, но, прежде чем делать выводы, вспомните об абсолютно водонепроницаемых материалах. Они не способны отводить влагу от тела, поэтому создают эффект «полиэтиленового пакета».  Так что выбор за вами!

     


     

    Валерия Малышева, бренд-менеджер Forclaz в Decathlon Россия:


    Мембранные куртки для меня - это палочка-выручалочка не только во время дождя, но и также при переходах ветреных перевалов. Они хорошо спасают от ветра и сохраняют тепло, несмотря на то что не выглядят "тёплыми". Они удерживают тепло тела и не дают замёрзнуть. В прошлом апреле мы были в походе на Корсике, и 5 часов под дождем в +10 - настоящее испытание для любой куртки".

     

     

    Алексей Мишин, велотурист, личный рекорд - одиночный велопоход Архангельск-Новороссийск (ок. 2700 км):

    Для велотуриста мембранная одежда - хороший выбор: когда едешь под дождем, потеешь ничуть не меньше, чем в хорошую погоду, но при этом чувствуешь себя совершенно комфортно и защищен и от воды, и от сильного ветра. И даже если одежда подмокла под особенно жестоким ливнем, сохнет она очень быстро - бесценное свойство в походных условиях, когда нет времени долго сушиться, потому что нужно двигаться дальше.

     

    Автор: Елена Малинкина

     

     

    Подберите мембранную одежду у нас на сайте

     

    blog.decathlon.ru

    Клеточные мембраны — лекции на ПостНауке

     

    Итак, мы продвинулись от понимания структуры некоторых немембранных белков к пониманию структуры первых двух мембранных белков. Со временем наше понимание природы клеточной мембраны стало более подробным, и теперь мы знаем, к примеру, что липиды, которые ранее были просто общим классом, — мы знаем отчасти из работ Марка Бретчера, отчасти из последующих работ, что все гликолипиды (те гидрофильные/гидрофобные молекулы липидов с молекулой сахара — «гликолипид» значит ‘с молекулой сахара’) находятся на внешней поверхности и обращены к внешнему миру, а на внутренней поверхности есть кислотные или цвиттер-ионные (что значит, что в них есть оба заряда) молекулы — они обращены к внутренней поверхности. И теперь известны тысячи мембран, у каждой из которых своя структура, и у мембранных белков разные функции. Таким образом, мембрана выполняет множество различных функций, каждая из которых катализируется или активируется небольшой молекулярной машиной — либо одной молекулой белка, либо белковым комплексом.

     

    Итак, все функции мембраны: восприятие внешнего мира, транспортировка молекул из клетки или в нее или же передача сигнала внешнему миру — каждая из функций мембранных белков, помогающих клетке коммуницировать и взаимодействовать с внешним миром, выполняется всеми этими разными молекулами белка.

     

    С развитием жизни от одноклеточных организмов к более продвинутым эукариотам в соответствии с дарвиновской теорией естественного отбора появилось множество различных видов специализированных мембран, и в нормальной клетке (например, в клетке человека или другого эукариотического организма) существует много типов мембран, характеризующих разные подструктуры клетки. Например, в клетке есть ядро, у которого есть мембрана, ядерная мембрана; есть митохондрии (энергетический центр клетки, производящий АТФ), у которых есть две разные мембраны… Считается, что митохондрии и хлоропласты — две клеточные органеллы — появились в результате захвата раннего типа бактерий другим одноклеточным организмом — это так называемая эндосимбиотическая теория, общепринятая в наше время. Это две органеллы, но есть еще эндоплазматическая сеть, где молекулы синтезируются в рибосомах и выделяются в клетку, или встраиваются в мембрану, или выделяются через аппарат Гольджи и лизосомы во внешний мир. И теперь у нас есть более глубокое понимание того, как работает клеточная мембрана, основанное на работе отдельных белков, вырабатываемых в клетке под контролем ДНК и позволяющих клетке нормально функционировать и взаимодействовать с внешним миром. Вот более-менее приличное описание клеточной мембраны.

     

    Есть интересный вопрос: в чем разница между мембранами, которые окружают клетку (одиночными мембранами), и мембранами, которые формируют отделы внутри клетки? Есть приблизительно десять или двенадцать хорошо описанных типов мембран, и, конечно же, каждому из них можно было бы посвятить отдельную лекцию, но давайте по крайней мере кратко опишем их.

     

    Итак, вначале были одноклеточные организмы с одиночной мембраной, сообщающейся с окружающим миром. С развитием жизни многие из этих бактерий развили двойную мембрану. Так, в бактериях есть внутренняя и внешняя мембрана. Внутренняя мембрана обычно выполняет наиболее сложноосуществимые виды деятельности клетки: транспортировку, распознавание, передачу сигналов и так далее. Внешняя мембрана, напротив, чаще всего является защитным слоем, то есть у бактерии есть клеточная стенка или внешняя мембрана, не такая сложная по своим функциям, играющая роль буфера, защищающего клетку от враждебных условий внешней среды. Это у бактерий. И далее возникают высшие формы жизни, многоклеточные организмы, и здесь появляются ткани, клетки, органоиды и так далее — множество разных типов клеток: клетки почек, клетки печени, клетки сетчатки, клетки мозга, нейроны… И каждая из этих клеток организована по-своему.

     

    Но у многих эукариот общая структура клетки одинакова: ядро клетки, митохондрии и в растениях хлоропласты, которые производят энергию и отвечают за большую часть энергетического бюджета клетки — создание и поглощение энергии в клетках. Митохондрии и хлоропласты — это специализированные органеллы, у которых есть своя функция, и опять же у каждой из них есть внутренняя и внешняя мембрана. Можно было бы прочитать целую лекцию о том, как работают митохондрии, но в целом они поглощают питательные вещества, перерабатывают их, производят АТФ. АТФ — это молекула, которая представляет собой химическое хранилище энергии. Обычно ее называют энергетической валютой клетки, которая затем выходит в цитоплазму и используется в деятельности клетки. В АТФ есть фосфатная группа на конце молекулы, и, когда она «отрезается», АТФ превращается в АДФ, которая затем возвращается в митохондрию, «перезаряжается» и отправляется обратно, так что у митохондрии есть АДФ/АТФ-транслоказа, которая обменивает эти две молекулы друг на друга и «заряжает» клетку. Таким образом, митохондрии производят всю энергию в клетке. Хлоропласты же поглощают свет и затем превращают его сначала в мембранный потенциал, который превращается в ту же АТФ, а она, в свою очередь, выходит в клетку&

    В эукариотических клетках есть ядро, содержащее ДНК. Ядерная мембрана отделяет ядро от цитоплазмы; ДНК транскрибируется в  РНК, которая отправляется в цитоплазму, а в рибосомах транслируется для создания белков, выделяющихся либо в цитоплазму, либо через эндоплазматическую сеть — еще одну мембранную структуру, находящуюся в цитоплазме, а в эндоплазматической сети в эукариотических клетках белки или включаются в мембрану, или проходят через внутреннюю часть эндоплазматической сети, а затем — через аппарат Гольджи, и многочисленные везикулы попадают наружу клетки. Таким образом, есть пути секреции, организованные разными мембранами, и в каждой из мембран есть свой белок, который задает свойства мембраны.

    postnauka.ru

    Плазматическая мембрана ☑️ строение и функции, основное свойство, из чего состоит, как выглядит, хиический состав, для чего нужна, виды, толщина

    История изучения

    Впервые строение и функции плазматической мембраны начали изучать в 1925 году. Тогда специалисты смогли впервые выделить оболочки эритроцитов. Они назвали их «тени», вычислили общую площадь. После этого ученые с помощью ацетона выделили все жиры (липиды). Это было необходимо для определения их количества на каждую единицу площади эритроцитов. Вывод, сделанный после исследований и экспериментов, был правильным, но ученые допустили несколько грубейших ошибок:

    • ацетон не помогает выделить абсолютно все жиры из цитоплазматической мембраны;
    • площадь цитолеммы была определена неправильно, поскольку мембраны были сухими.

    Несмотря на эти нарушения, случайным образом результат оказался верным, что позволило открыть двойной слой или бислой. Далее исследования специалистов продолжились. Они обратили внимание на натяжение выделенных пленок. Мембраны не могли быть такими жесткими, поэтому появилась теория, что они содержат белки, позволяющие сохранять упругость и эластичность. В 1935 году американские ученые пришли к выводу, что схема строения плазматической мембраны напоминает сандвич, то есть имеется липидный бислой, с двух сторон окруженный белковыми прослойками.

    В 1950-х годах теория была подтверждена во время первых микроскопических исследований. В 1960 году Дж. Робертсон сформулировал теорию строения биологической мембраны, которая утверждала, что все оболочки в клетках состоят из трех слоев. Однако теория сандвича или бутерброда была опровергнута, поскольку появились другие факты.

    Первым из них стали сведения о глобулярности мембраны. Помимо этого, специалисты определили, что во время микроскопического исследования структура пленки во многом зависит от способа ее фиксации. Следующим открытием, опровергающим теорию сандвича, было изучение сперматозоида, во время которого появилось подтверждение, что даже в одной клетке структура мембраны на разных участках отличается.

    Последним опровержением стало выявление белков непосредственно внутри мембраны, тогда как теория бутерброда предполагала их нахождение за ее пределами. Подобные выводы в 1972 году использовал Сингер и Николсон, создавая мозаичную модель строения цитолеммы. На ней было отчетливо видно, что внутри пленки имеется большое количество белков, но молекулы встречаются и за пределами бислоя.

    Химический состав

    Плазмалемма или клеточная мембрана представляет собой молекулярную эластическую структуру, состоящую из большого количества липидов, а также белков. Она позволяет отделить клетку от других жидкостей в организме, предотвратить ее повреждение, принимает участие в метаболических процессах. Помимо этого, цитолемма помогает разделить камеры клетки для обеспечения ее нормального функционирования.

    Химический состав плазматический мембраны в основном представлен фосфолипидами, но присутствуют и другие молекулы. Этот вид липидов относится к сложным, поэтому специалисты долгое время не могли точно определить состав цитолеммы. Каждый фосфолипид имеет гидрофильную часть и гидрофобную. Первая представляет собой голову молекулы и обращена наружу, вторая — хвост и обращена внутрь.

    У большинства живых организмов на планете химический состав мембраны очень похож, как и ее структура. Однако существуют исключения. У некоторых организмов она образована глицерином и другими спиртами. Белки внутри биологической оболочки могут быть разными. Наиболее часто встречаются следующие:

    1. Интегральные протеины пронизывают пленку насквозь, поэтому могут быть внутри и снаружи клетки. Их количество в составе наибольшее.
    2. Полуинтегральные белки могут быть погружены одной частью во внешний или внутренний слой, выполняют функцию соединения мембраны с цитоскелетом.
    3. Поверхностные располагаются на пленке или ее внутреннем слое, не погружаются в него.

    Наиболее важными считаются интегральные, ведь они могут выполнять роль транспортных включений и рецепторов. Иногда такие протеины выступают в роли ионных каналов, поддерживают постоянство внешней и внутренней среды.

    В первые годы изучения цитолеммы специалисты не разделяли протеины на разные группы, считая их одинаково необходимыми и выполняющими одни и те же функции. Однако сегодня, благодаря развитию технологий и появлению современных микроскопов, можно с уверенностью сказать, что строение мембраны довольно сложное, даже у простых растительных клеток.

    Основные функции

    Основным свойством плазматической мембраны является элементарное поддержание постоянства внутренней среды клетки и обеспечение ее бесперебойного функционирования. Помимо этого, она выполняет и другие функции:

    1. Барьерная. Обеспечивает активные обменные процессы и безопасное контактирование с внешней средой. Некоторые оболочки защищают клетку от опасных компонентов, которые могут ее повредить или уничтожить. Дополнительно барьер обеспечивает избирательную проницаемость, то есть попадание за пленку каких-либо атомов будет зависеть от их размера и толщины цитолеммы. Благодаря этому, возможно сохранение целостности наружной ткани, поверхности самой пленки.
    2. Транспортная. Имеет важное значение, ведь благодаря ей осуществляется транспорт разных веществ в клетку и выделяются продукты распада из нее. Помимо этого, способность переносить конкретные компоненты осуществляет поддержание оптимального кислотно-щелочного равновесия, а также ионного состава. Последнее важно для обработки некоторых ферментов. Транспорт может быть пассивным и активным. Первый не требует затрат энергии, происходит медленно, второй сопровождается значительными энергетическими потерями, но протекает быстро.
    3. Энергетическая. Также играет важную роль. Структурные особенности клетки не имеют значения, поскольку в каждой плазмалемме имеются белки, отвечающие за перенос энергии и входящие в состав специальных систем для обеспечения этого процесса. При снижении их концентрации происходит нарушение метаболизма, провоцирующее другие отрицательные изменения.
    4. Рецепторная. Во многом зависит от количества интегральных белков в оболочке. Если их недостаточно, клетка не в состоянии воспринимать сигналы, теряется способность узнавания того или иного импульса, а также главная особенность — реакция, возникающая в ответ на изменения на поверхности мембраны.

    В отличие от других способностей оболочки, рецепторная играет определяющую роль. Многие гормоны, циркулирующие в крови человека, животного и других организмов, способны воздействовать только на те частицы, в которых имеются специальные белки, выполняющие рецепторную функцию. Если в плазмолемме их нет, все процессы нарушаются. Дополнительно такие протеины могут участвовать в проведении нервного импульса, связываясь с нейромедиаторами.

    Другие возможности

    Помимо основных функций цитоплазматической мембраны, имеются дополнительные, которые изучены не так подробно, но играют важную роль. Матричная обеспечивает взаимодействие всех протеинов для более эффективного метаболизма в клетке и оболочке. Это позволяет построить новую пленку в случае ее повреждения.

    Механическая функция также важна. Она позволяет обеспечить автономность клетки и всех ее структур разного типа, поддержать связь между разными единицами тканей и предотвратить их разрыв. Клеточные стенки играют определяющую роль в обеспечении механической защиты. У животных эту работу выполняет межклеточное вещество.

    Ферментативная функция осуществляется не в каждой цитолемме, поскольку некоторые клетки лишены специальных веществ. Однако в эпителиальных единицах тонкого кишечника человека и других млекопитающих содержится довольно большое количество пищеварительных ферментов, принимающих непосредственное участие в процессе переработки пищи.

    Генерация и проведение потенциалов играет важную роль. Благодаря наличию цитолеммы, в клетке постоянно поддерживается определенное количество ионов калия и натрия. Первых в клетке гораздо больше, чем снаружи, вторых больше за пределами единицы и меньше внутри. Если изучить характеристику этих ионов в сравнительной таблице, можно увидеть, что они выполняют важнейшие функции, а при изменении концентрации наблюдается расстройство метаболических процессов.

    Маркировка клетки также осуществляется с участием цитоплазматической мембраны. На каждой из них во время микроскопического исследования можно увидеть антигены, выполняющие роль ярлыков или антенн. Благодаря этому, клетки с одинаковой маркировкой могут узнавать друг друга и действовать сообща при возникновении такой необходимости. Именно антенны позволяют клеткам иммунной системы распознавать чужеродные антигены и действовать против них для обеспечения защиты организма.

    Благодаря дополнительным возможностям плазмоллемы, возможно существование всех клеток внутри одного организма и их постоянное взаимодействие.

    Структура цитолеммы

    Почти все клеточные оболочки состоят из жиров нескольких классов. Чаще всего встречается холестерол, глико- и фосфолипиды. Последние состоят не только из липидов, но также имеют углеводное включение в виде «хвоста». Холестерол выполняет роль твердого жира, поскольку придает мембране жесткость, а также заполняет пространство между другими липидами.

    Существуют более жесткие оболочки и эластичные, мягкие, в которых количество холестерола снижено. Помимо этого, вещество служит барьером, препятствуя переходу из клетки в клетку полярных молекул. Состав и ориентация протеинов в каждой мембране отличается, но специалисты определили, что без них пленка существовать не может.

    В структуру плазмалеммы также входят аннулярные жиры, располагающиеся в непосредственной близости от протеинов и выделяющиеся вместе с ними из клетки. Без этих липидов протеины оболочки не могут выполнять свои функции. В большинстве случаев плазматическая мембрана асимметрична, то есть в разных ее частях количество липидов и протеинов отличается.

    Каждая оболочка имеет органеллы. Они представляют собой участки цитоплазмы, связанные между собой. Наиболее часто встречаются следующие органеллы:

    • комплекс Гольджи;
    • вакуоли;
    • эндоплазматическая сеть;
    • лизосомы.

    Разные клетки обладают индивидуальным составом органелл, но некоторые из них присутствуют в подавляющем большинстве единиц ткани. Благодаря своей структуре, мембраны способны к избирательной проницаемости. Некоторые вещества проходят через них свободно, другие — нет. Процесс регулируется самой оболочкой. Он может быть пассивным и активным. В первом случае в реакцию вступают интегральные белки, во втором требуются значительные энергетические затраты.

    Значение клеточной оболочки

    Если внимательно изучить строение и функции плазматической оболочки, можно понять ее роль и значение в нормальном функционировании всего организма. После получения точных сведений о работе мембраны ученые смогли подтвердить ее необходимость и первостепенную роль в организме.

    Все органы животных и человека состоят из клеток, поэтому палазмалемма имеет наиболее важное значение для всего организма. При ее повреждении клетка неспособна нормально существовать, нарушается целая цепь процессов. Именно поэтому специалисты и сегодня изучают цитоплазматическую мембрану, ее функции и процессы, в которых она принимает участие.


    nauka.club

    Ядерная мембрана — Википедия

    Материал из Википедии — свободной энциклопедии

    Я́дерная мембра́на, или ядерная оболо́чка, или кариоле́мма, или кариоте́ка[1], или нуклеоле́мма[2] — двойной липидный бислой, мембрана, окружающая ядро в эукариотических клетках.

    Ядерная мембрана состоит из двух липидных бислоёв — наружной ядерной мембраны и внутренней ядерной мембраны. Пространство между мембранами называется перинуклеарным пространством; оно составляет единый компартмент с полостью с эндоплазматического ретикулума (ЭПР). Обычно ширина перинуклеарного пространства составляет около 20—40 нм[3]. Хотя внутренняя и внешняя ядерные мембраны продолжают друг друга, они несут разный набор белков[4].

    Наружная ядерная мембрана непосредственно переходит в мембрану эндоплазматического ретикулума[5], но при этом наружная ядерная мембрана содержит различные белки в значительно более высоких концентрациях, чем они присутствуют в ЭПР[6].

    Внутренняя мембрана ограничивает нуклеоплазму и изнутри покрыта ядерной ламиной, сетью промежуточных филаментов, которая поддерживает форму ядерной мембраны, обеспечивает прикрепление хроматина к оболочке ядра и участвует в регуляции экспрессии генов[6]. Ядерная ламина состоит из белков ламинов. Внутренняя мембрана связана с наружной мембраной посредством ядерных пор, пронизывающих обе мембраны. Хотя ЭПР и обе мембраны соединены друг с другом, многие белки, входящие в их состав, фиксированы в мембране, а не диффундируют свободно в её пределах[7].

    Ядерная мембрана пронизана многочисленными ядерными порами. Это крупные белковые комплексы диаметром около 100 нм, с внутренней полостью около 40 нм шириной[6]. Они соединяют внутреннюю и наружную ядерные мембраны. Количество ядерных пор различно в разных типах клеток и может изменяться в зависимости от транскрипционной активности ядра.

    В течение G2-фазы интерфазы поверхность ядерной мембраны увеличивается, число ядерных пор иногда возрастает вдвое[6].

    У некоторых низших эукариот, например, дрожжей, имеющих закрытый митоз, клеточная мембрана остаётся целой в ходе клеточного деления. Веретено деления у них формируется под мембраной[6]. При полузакрытом митозе в ядерной оболочке образуются крупные отверстия. При закрытом митозе с внеядерным веретеном (у динофлагеллят) в ядерную оболочку встраиваются центромеры хромосом.

    У высших эукариот — животных и растений — ядерная мембрана разрушается в прометафазе митоза, позволяя веретену деления сформироваться снаружи. Механизм разрушения и перестройки ядерной мембраны ещё не до конца понятен.

    Разрушение[править | править код]

    У млекопитающих ядерная мембрана разрушается последовательно, шаг за шагом. Сначала полипептиды-нуклеопорины избирательно переносятся из ядерной мембраны. После этого оставшиеся ядерные поровые комплексы одновременно разрушаются. Биохимические исследования показали, что, скорее, ядерные поры распадаются на стабильные фрагменты, чем на короткие полипептидные цепочки[6].

    Электронная и флуоресцентная микроскопия засвидетельствовали то, что ядерная мембрана абсорбируется эндоплазматическим ретикулумом — в норме ядерные белки в ЭПР не обнаруживаются, однако проявляются там в ходе митоза[6].

    Перестройка[править | править код]

    То, как ядерная мембрана вновь перестраивается в целостную структуру в течение телофазы, остаётся спорным вопросом. Существуют две теории[6]:

    • Слияние везикул — везикулы ядерной мембраны сливаются, образуя ядерную мембрану;
    • Переформировка ЭПР — части ЭПР, содержащие абсорбированные белки ядерной мембраны, покрывают ядерное пространство, формируя закрытую ядерную мембрану.
    • Альбертс Б., Джонсон А., Льюис Д. и др. . Молекулярная биология клетки. В 3 томах. Т. 1. — М. — Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. — 808 с. — ISBN 978-5-4344-0112-8.

    ru.wikipedia.org

    Эндомембранная система — Википедия

    Эндомембранная система

    Эндомембра́нная систе́ма — система разнообразных мембран, располагающихся в цитоплазме эукариотической клетки (исключая мембраны митохондрий, пероксисом и хлоропластов). Эти мембраны делят клетку на функциональные компартменты, или органеллы. К компонентам эндомембранной системы относят ядерную оболочку, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, везикулы, вакуоли и клеточную мембрану. Мембраны эндомембранной системы составляют единую функциональную единицу и либо непосредственно соединяются друг с другом, либо обмениваются материалом посредством везикулярного транспорта[1]. Стоит отметить, что в эндомембранную систему не входят мембраны митохондрий, пероксисом и хлоропластов, хотя, возможно, она произошла от митохондриальных мембран.

    Ядерная оболочка состоит из двух липидных бислоёв, в которые заключён весь ядерный материал[2]. Эндоплазматический ретикулум — органелла транспорта и синтеза, которая разветвляется в цитоплазме животных и растительных клеток[3]. Аппарат Гольджи состоит из набора множества компартментов, в которых молекулы упаковываются для доставки в другие части клетки или секреции[4]. Вакуоли имеются и в растительных, и в животных клетках (хотя в растительных клетках они крупнее), и поддерживают форму и структуру клетки, а также накапливают запасные вещества и продукты обмена[5]. Лизосомы разрушают проникнувшие в клетку вещества и старые органеллы. Везикулы — относительно небольшие мембраносвязанные пузырьки, в которых вещества накапливаются или транспортируются. Клеточная мембрана играет роль защитного барьера, который регулирует транспорт веществ из клетки и внутрь неё[6]. У грибов есть особая мембранная органелла — апикальное тельце, или Spitzenkörper, которая участвует в росте концов гиф[7].

    У прокариот внутренние мембраны редки, хотя у многих фотосинтезирующих бактерий плазматическая мембрана образует множество складок, и нередко большая часть клетки заполнена светособирающими мембранами[8]. Светособирающие структуры могут быть даже замкнуты в органеллы, например, хлоросомы зелёных серных бактерий[9].

    Органеллы эндомембранной системы связаны друг с другом или непосредственным контактом, или через перенос мембранных пузырьков — везикул. Несмотря на эту общность, различные мембраны отличаются по структуре и функциям. Толщина, молекулярный состав и метаболическое поведение мембраны не фиксированы, и они могут изменяться несколько раз в течение жизни мембраны. Единственной общей характеристикой мембран является наличие липидного бислоя, который пронизан белками насквозь или белки прикрепляются к одной из его сторон[10].

    Первое предположение о том, что мембраны внутри клетки формируют единую систему, компоненты которой обмениваются веществами друг с другом, было сформулировано Morré и Mollenhauer в 1974 году[11]. Оно было выдвинуто для объяснения того, как внутри клетки собираются различные липидные мембраны, причём мембраны собираются из липидов в ходе липидного тока (англ. lipid flow) из мест биосинтеза липидов[12]. Идея липидного тока через непрерывную систему мембран и везикул отлична от предположения о том, что различные мембраны представляют собой несвязанные сущности, которые формируются благодаря транспорту свободных компонентов липидов, таких как свободные жирные кислоты и стеролы, через цитозоль. Важно отметить, что транспорт липидов по цитозолю и липидный ток через непрерывную эндомембранную систему не являются взаимноисключающими и могут оба иметь место в клетках[13].

    Ядерная оболочка[править | править код]

    Клеточное ядро

    Ядерная оболочка окружает ядро и отделяет его от цитоплазмы. Она включает две мембраны, каждая из которых представлена липидным бислоем с ассоциированными белками[14]. Наружная мембрана продолжается в шероховатый эндоплазматический ретикулум (ЭПР) и, как и он, несёт рибосомы, прикреплённые к поверхности. Наружная ядерная мембрана, кроме того, продолжается во внутреннюю ядерную мембрану в области многочисленных маленьких отверстий, называемых ядерными порами, которые пронзают ядерную оболочку. Эти поры достигают 120 нм в диаметре и регулируют транспорт молекул между ядром и цитоплазмой, позволяя некоторым проходить сквозь оболочку, а другим — нет[15]. Ядерные поры играют существенную роль в метаболизме клеток, поскольку располагаются в области очень активного транспорта веществ. Пространство между наружной и внутренней ядерной мембраной называется околоядерным, или перинуклеарным пространством и соединено с внутренним пространством (люменом) ЭПР.

    Форма ядерной оболочки определяется сетью промежуточных филаментов, похожей на арматуру, которая называется ядерная ламина. Она связывается с хроматином, интегральными мембранными белками и другими компонентами ядра, располагающимися вблизи внутренней ядерной мембраны. Считается, что ядерная ламина помогает веществам внутри ядра достичь ядерных пор, а также участвует в разборке ядерной оболочки при митозе и её сборке в конце митоза[2].

    Ядерные поры чрезвычайно эффективно осуществляют селективный транспорт веществ внутрь и из ядра. Из ядра в цитоплазму постоянно перемещаются РНК и рибосомные субъединицы. Гистоны, белки, регулирующие экспрессию генов, ДНК- и РНК-полимеразы и другие молекулы, необходимые для функционирования ядра, импортируются в ядро из цитоплазмы. Ядерная оболочка типичной клетки млекопитающего содержит от 3000 до 4000 ядерных пор. Когда клетка синтезирует ДНК, ей нужно транспортировать в ядро через каждый ядерный поровый комплекс около 100 молекул гистонов каждую минуту. Если клетка быстро растёт, то каждая ядерная пора должна переносить около 6 свежесобранных больших и малых субъединиц рибосом в минуту из ядра в цитозоль, где они используются для синтеза белков[16].

    Эндоплазматический ретикулум[править | править код]

    1 Клеточное ядро  2 Ядерная пора  3 Шероховатый эндоплазматический ретикулум  4 Гладкий эндоплазматический ретикулум  5 Рибосома на шероховатом ЭПР  6 Транспортируемые белки  7 Транспортная везикула  8 Аппарат Гольджи  9 Цис-Гольджи  10 Транс-Гольджи  11 Цистерна аппарата Гольджи

    Эндоплазматический ретикулум (ЭПР) — мембранная органелла синтеза и транспорта, которая является продолжением наружной ядерной мембраны. Более чем половина мембран эукариотической клетки приходится на ЭПР. ЭПР состоит из уплощённых мешочков и ветвящихся трубочек, которые, как считают, связаны друг с другом, так что мембрана ЭПР представляет собой непрерывный замкнутый слой, заключающий сильно разветвлённое внутреннее пространство (люмен). На люмен приходится около десяти процентов объёма клетки. Мембрана ЭПР позволяет протекать эффективному селективному транспорту веществ между люменом и цитоплазмой и, поскольку она соединена с наружной ядерной мембраной, она формирует канал между ядром и цитоплазмой[17].

    ЭПР играет ключевую роль в образовании, модификации и транспорте биохимических соединений для внутреннего и внешнего использования клеткой. Его мембрана служит местом образования всех трансмембранных белков и почти всех липидов для клеточных органелл, в том числе и для самого себя, а также для аппарата Гольджи, лизосом, эндосом, митохондрий, пероксисом, секреторных везикул и плазматической мембраны. Более того, бо́льшая часть белков, выделяемых клеткой наружу, а также белки, предназначенные для люмена ЭПР, аппарата Гольджи и лизосом, первоначально проходят через люмен ЭПР. Поэтому многие белки, обнаруживаемые в люмене ЭПР, находятся там только временно и впоследствии доставляются в другие места. Некоторые белки постоянно находятся в люмене и называются резидентными белками ЭПР. Эти особые белки содержат специальный сигнал удержания, представляющей собой особую последовательность аминокислот, которая заставляет органеллу удерживать их внутри. Примером резидентных белков ЭПР может служить белковый шаперон, известный как BiP[en], который определяет другие белки, неправильно уложенные или процессированные, и препятствует их доставке к конечным пунктам назначения[18].

    Существует два различных, хотя и соединённых друг с другом, отдела ЭПР, имеющих разные структуру и функции: гладкий (агранулярный) ЭПР и шероховатый (гранулярный) ЭПР. Шероховатый эндоплазматический ретикулум получил своё название за то, что его обращённая к цитоплазме сторона покрыта рибосомами, которые придают ему шероховатый облик при рассматривании под электронным микроскопом. Гладкий ЭПР же выглядит гладким, так как он не несёт рибосом[19].

    Гладкий эндоплазматический ретикулум[править | править код]

    В подавляющем большинстве клеток участки гладкого ЭПР малочисленны и часто частично являются гладкими, а частично шероховатыми. Их иногда называют переходным ЭПР, потому что в них находятся места выхода из ЭПР, от которых отпочковываются везикулы, несущие новосинтезированные белки и липиды к аппарату Гольджи. В некоторых специализированных клетках, впрочем, гладкий ЭПР обилен и имеет некоторые специфические функции. В этих клетках гладкий ЭПР может служить местом синтеза липидов, некоторых этапов метаболизма углеводов, детоксикации лекарств и ядов[17][19].

    Ферменты гладкого ЭПР необходимы для синтеза липидов, в том числе масел, фосфолипидов и стероидов. Половые гормоны позвоночных и стероидные гормоны, секретируемые надпочечниками, входят в число стероидов, синтезируемых гладким ЭПР животных клеток. В клетках, синтезирующих эти гормоны, очень хорошо развит гладкий ЭПР[17][19].

    Клетки печени являются другим примером клеток, у которых хорошо развит гладкий ЭПР. В этих клетках можно наблюдать участие гладкого ЭПР в метаболизме углеводов. Клетки печени запасают углеводы в форме гликогена. Распад гликогена приводит к высвобождению из клеток печени глюкозы, которая важна для регуляции уровня сахара в крови. Однако первичным продуктом распада гликогена является глюкозо-1-фосфат. Он превращается в глюкозо-6-фосфат, а далее фермент, локализованный в гладком ЭПР клеток печени, удаляет фосфат от глюкозы, после чего она может выйти из клетки[17][19].

    Ферменты гладкого ЭПР также могут служить для детоксикации лекарств и ядов. Детоксикация, как правило, включает добавление гидроксильной группы к препарату, что делает его более растворимым и способным выйти из организма. Одна хорошо изученная реакция осуществляется цитохромом P450[17][19].

    В мышечных клетках гладкий ЭПР также выполняет особые функции. Белки, локализованные в мембране ЭПР, накачивают ионы кальция из цитозоля в люмен. Когда мышечная клетка стимулируется нервным импульсом, кальций возвращается в цитозоль через мембрану ЭПР и вызывает сокращение[17][19].

    Шероховатый эндоплазматический ретикулум[править | править код]

    Клетки многих типов образуют белки, которые синтезируются рибосомами, прикреплёнными к шероховатому ЭПР. Рибосомы собирают белки из аминокислот, и белки проникают в ЭПР для дальнейшей модификации. Такие белки могут быть трансмембранными белками, которые пронизывают мембрану ЭПР, или водорастворимыми белками, которые проходят из мембраны в люмен. Белки, проникающие внутрь ЭПР, укладываются в правильную трёхмерную структуру. К ним присоединяются углеводные остатки, и далее готовые белки либо транспортируются дальше из ЭПР (секретируемые белки) в те участки клетки, где они нужны, либо отправляются в аппарат Гольджи, где подвергаются дальнейшей модификации[17][19].

    Как только секретируемый белок образовался, он оказывается отделённым мембраной ЭПР от цитозольных белков. Секретируемые белки отделяются от ЭПР, упакованные в везикулы, которые отпочковываются, как пузырьки, от мембраны ЭПР. Везикулы, которые доставляют свой груз к другим частям клетки, называются транспортными везикулами[17][19]. Другой механизм для транспорта белков и липидов из ЭПР в прочие органеллы заключается в их переносе через особые транспортные мембранные белки, расположенные в сайте контакта мембран, где ЭПР близко и стабильно связан с другими органеллами, такими как плазматическая мембрана, аппарат Гольджи или лизосомы[20].

    Кроме образования секретируемых белков, шероховатый ЭПР принимает участие в росте мембраны за счёт добавления белков и фосфолипидов. Когда мембранный белок синтезируется рибосомой, сидящей на ЭПР, он сам вставляется в мембрану ЭПР и остаётся заякоренным в мембране своим гидрофобным участком. Шероховатый ЭПР также образует свои собственные мембранные фосфолипиды; ферменты, встроенные в мембрану ЭПР, участвуют в их синтезе. Мембрана ЭПР увеличивается в размерах, и её фрагменты могут быть перенесены транспортными везикулами в другие компоненты эндомембранной системы[17][19].

    Аппарат Гольджи[править | править код]

    Микрофотография аппарата Гольджи

    Аппарат Гольджи состоит из соединённых между собой мешочков, называемых цистернами. По виду он напоминает стопку оладий. Количество цистерн варьирует в зависимости от специфических функций клетки. Аппарат Гольджи служит для дальнейшей модификации белков клетки, доставленных в него из ЭПР. Часть аппарата Гольджи, которая получает мешочки с белками от ЭПР, называется цис-Гольджи и обычно располагается вблизи ЭПР, а противоположная его сторона называется транс-Гольджи, от неё мешочки с модифицированными белками отделяются для дальнейшего транспорта. Транс-Гольджи, как правило, находится рядом с плазматической мембраной, потому что бо́льшая часть молекул, отщепляющихся от аппарата Гольджи, предназначена для плазматической мембраны[21].

    Везикулы, отправляемые из ЭПР в аппарат Гольджи, подвергаются там дальнейшей модификации и далее посылаются к другим частям клетки или к плазматической мембране для секреции. По мере продвижения по изобилующему ферментами внутреннему пространству аппарата с белками могут происходить различные превращения. Часто на них навешиваются и модифицируются углеводные хвосты, и в результате образуются гликопротеины. В аппарате Гольджи происходит отрезание и замещение моносахаридов, в результате чего получаются разнообразные олигосахариды. Аппарат Гольджи не только модифицирует белки, но также может производить сам некоторые вещества. Например, в растительной клетке в нём синтезируются пектины и другие структурные полисахариды[22].

    Когда модификация белков завершается, аппарат Гольджи сортирует продукты превращений и отсылает их к различным частям клетки. Этому способствуют разнообразные метки, пришиваемые к белкам ферментами аппарата Гольджи. Полностью готовые белки отпочковываются в везикулах от транс-Гольджи и направляются к местам назначения[23].

    Везикулы[править | править код]

    Везикулы — это маленькие мембраносвязанные транспортные единицы, которые могут переносить молекулы между различными компартментами. Большинство везикул переносят мембраны, собранные в ЭПР, в аппарат Гольджи, а от аппарата Гольджи — в различные места клетки[24].

    Существует несколько типов везикул, различающихся покрывающими их белками. Бо́льшая часть везикул образуется в специальных участках мембраны. Когда везикула отпочковывается от мембраны, её обращённая к цитозолю поверхность несёт специальные белки. Каждая мембрана, к которой движется везикула, несёт особые маркеры на своей цитоплазматической стороне. Маркер соответствует белкам, которыми окружена везикула. Когда везикула находит свою мембрану, они сливаются[25].

    Известно три хорошо изученных типа везикул: клатрин-окаймлённые везикулы, COPI[en]-окаймлённые везикулы и COPII[en]-окаймлённые везикулы. Каждый тип выполняет определённые функции внутри клетки. Например, клатрин-окаймлённые везикулы переносят вещества между аппаратом Гольджи и плазматической мембраной. COPI- и COPII-окаймлённые везикулы часто используются для транспорта веществ между аппаратом Гольджи и ЭПР[25].

    Вакуоли[править | править код]

    Вакуоли, как и везикулы, представляют собой мембраносвязанные внутриклеточные мешочки. Они крупнее везикул и могут иметь различные специфические функции. Функции вакуолей в растительных и животных клетках различаются. В растительных клетках объём вакуолей составляет от 30 % до 90 % всего объёма клетки[26]. В большинстве зрелых растительных клетках имеется одна крупная центральная вакуоль, окружённая мембраной, называемой тонопластом. В растительных клетках вакуоли служат местом хранения запасных питательных веществ и отходов метаболизма. Раствор, в котором находятся все эти соединения внутри вакуоли, называется клеточным соком. Иногда в клеточном соке находятся пигменты, окрашивающие клетку. Вакуоли могут увеличивать размер клетки, наполняясь водой, и регулируют тургорное давление. Как и в лизосомах животных клеток, внутри вакуолей растительных клеток поддерживается кислая среда и имеется много гидролитических ферментов. pH вакуолей позволяет им поддерживать гомеостаз клетки. Например, когда рН во внеклеточной среде падает, протоны, плавающие в цитозоле, могут быть накачаны в вакуоли, чтобы поддерживать цитозольный рН постоянным[27].

    У животных вакуоли участвуют в процессах экзоцитоза и эндоцитоза. Вещества, которые должны попасть из внеклеточной среды внутрь клетки, окружаются плазматической мембраной и переносятся в вакуоль. Существует два типа эндоцитоза: фагоцитоз (поглощение твёрдых частиц) и пиноцитоз (поглощение капель жидкости). При фагоцитозе клетка может поглощать и такие крупные частицы, как бактерии[28].

    Лизосомы[править | править код]

    Лизосомы — это органеллы, содержащие гидролитические ферменты для внутриклеточного пищеварения. Главной функцией лизосом является расщепление молекул, поглощённых клеткой, а также износившихся клеточных органелл. Ферменты лизосом — кислые гидролазы, для оптимальной их работы необходима кислая среда. Лизосомы обеспечивают такую среду, поддерживая внутри себя рН 5,0[29]. Если лизосома разрушится, то вышедшие из неё ферменты не будут очень активны из-за нейтрального рН цитозоля. Однако если в клетке одновременно разрушится много лизосом, то она может переварить сама себя.

    Лизосомы осуществляют внутриклеточное пищеварение в ходе фагоцитоза, сливаясь с вакуолью и высвобождая в неё свои ферменты. В результате этого процесса сахара́, аминокислоты и другие мономеры выходят в цитозоль и становятся питательными веществами клетки. Лизосомы также используют свои ферменты для разрушения обветшавших органелл клетки в процессе аутофагии. Лизосомы заключают в себя износившуюся органеллу и подвергают её воздействию своих гидролитических ферментов. Образующиеся органические мономеры выходят в цитозоль для повторного использования. Наконец, последняя функция лизосом — участие в расщеплении клеткой самой себя в ходе автолиза[30].

    Апикальное тельце[править | править код]

    Апикальное тельце, или Spitzenkörper — компонент эндомембранной системы, встречающийся только у грибов, он участвует в росте концов грибных гиф. Это фазово-тёмное тельце, которое состоит из скопления мембраносвязанных везикул, содержащих компоненты клеточной стенки, и служит для высвобождения их между аппаратом Гольджи и плазматической мембраной. Апикальное тельце подвижно и при движении вперёд вызывает рост кончика гифы[7].

    Плазматическая мембрана[править | править код]

    Строение плазматической мембраны

    Плазматическая мембрана — это фосфолипидный бислой, отделяющий клетку от окружающей среды и регулирующий транспорт молекул и сигналов в клетку и из клетки. В плазматическую мембрану вставлены белки, выполняющие различные функции. Плазматическая мембрана — это не жёсткая структура, молекулы, её образующие, способы к латеральному перемещению (то есть перемещению в плоскости мембраны). Современная модель плазматической мембраны, в которой она состоит из разнообразных молекул, способных к латеральным перемещениям, называется жидкостно-мозаичной. Малые молекулы, такие как CO2, вода и кислород, могут проходить через мембрану за счёт свободной диффузии и осмоса. Крупные молекулы, необходимые клетке, доставляются внутрь специальными белками с помощью активного транспорта[31].

    Плазматическая мембрана выполняет несколько функций. Среди них транспорт питательных веществ внутрь клетки, свободный выход отходов метаболизма, предотвращение попадания в клетку ненужных веществ, препятствие для выхода нужных молекул из клетки, поддержание рН цитозоля и его осмотического давления. Для выполнения этих функций используются транспортные белки, которые позволяют одним, но не другим молекулам проникать внутрь и вне клетки. Эти белки используют энергию гидролиза АТФ для накачивания веществ против их градиента концентрации[31].

    Кроме вышеперечисленных общих функций, у многоклеточных организмов плазматическая мембрана может играть некоторые специфические роли. Гликопротеины мембраны участвуют в распознавании клетками друг друга для удаления метаболитов и организации тканей. Другие белки мембраны обеспечивают прикрепление к ней цитоскелета и межклеточного матрикса, благодаря чему клетка имеет определённую форму. В плазматической мембране также встречаются ферменты, катализирующие различные химические реакции. Белки-рецепторы мембраны имеют форму, подходящую для связывания с молекулой, передающей сигнал, что вызывает различные клеточные ответы[32].

    Происхождение эндомембранной системы связано с происхождением эукариот как таковых и происхождению эукариот в связи с эндосимбиозом, положившим начало митохондриям[33]. Большинство современных гипотез утверждают, что эндомембранная система происходит из наружной мембраны везикул, отпочковывавшихся от эндосимбиотической митохондрии[34]. Эта модель происхождения эндомембранной системы требует минимального количества событий в происхождении эукариот и объясняет многие связи митохондрий с другими компартментами клетки[35].

    1. Smith, A. L. Oxford dictionary of biochemistry and molecular biology (англ.). — Oxford [Oxfordshire]: Oxford University Press, 1997. — P. 206. — ISBN 0-19-854768-4.
    2. 1 2 Davidson, Michael The Nuclear Envelope (неопр.). Molecular Expressions. Florida State University (2005). Дата обращения 9 декабря 2008.
    3. Davidson, Michael The Endoplasmic Reticulum (неопр.). Molecular Expressions. Florida State University (2005). Дата обращения 9 декабря 2008.
    4. Graham, Todd R. Eurekah Bioscience Collection Cell Biology (англ.). — University of New South Wales and Landes Bioscience, 2000. — ISBN 0-7334-2108-3.
    5. Lodish, Harvey Section 5.4 Organelles of the Eukaryotic Cell (неопр.). Molecular Cell Biology. W. H. Freeman and Company (2000). Дата обращения 9 декабря 2008.
    6. Cooper, Geoffrey The Mechanism of Vesicular Transport (неопр.). The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения 9 декабря 2008.
    7. 1 2 Steinberg G. Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. (англ.) // Eukaryotic cell. — 2007. — Vol. 6, no. 3. — P. 351—360. — doi:10.1128/EC.00381-06. — PMID 17259546. [исправить]
    8. Bryant D. A., Frigaard N. U. Prokaryotic photosynthesis and phototrophy illuminated. (англ.) // Trends in microbiology. — 2006. — Vol. 14, no. 11. — P. 488—496. — doi:10.1016/j.tim.2006.09.001. — PMID 16997562. [исправить]
    9. Psencík J., Ikonen T. P., Laurinmäki P., Merckel M. C., Butcher S. J., Serimaa R. E., Tuma R. Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. (англ.) // Biophysical journal. — 2004. — Vol. 87, no. 2. — P. 1165—1172. — doi:10.1529/biophysj.104.040956. — PMID 15298919. [исправить]
    10. Campbell Neil A., Jane B. Reece. Biology (неопр.). — 6th. — Benjamin Cummings (англ.)русск., 2002. — ISBN 0-8053-6624-5.
    11. Morré DJ, Mollenhauer HH. The endomembrane concept: a functional integration of endoplasmic reticulum and Golgi apparatus. In Dynamic Aspects of Plant infrastructure / A. W. Robards. — London, New York: McGraw-Hill, 1974. — P. 84—137.
    12. Morre D J. Membrane Biogenesis // Annual Review of Plant Physiology. — 1975. — Июнь (т. 26, № 1). — С. 441—481. — ISSN 0066-4294. — doi:10.1146/annurev.pp.26.060175.002301. [исправить]
    13. Voelker D. R. Organelle biogenesis and intracellular lipid transport in eukaryotes. (англ.) // Microbiological reviews. — 1991. — Vol. 55, no. 4. — P. 543—560. — PMID 1779926. [исправить]
    14. Childs, Gwen V. Nuclear Envelope (неопр.). UTMB (2003). Дата обращения 28 сентября 2008. Архивировано 20 июня 2006 года.
    15. Cooper, Geoffrey The Nuclear Envelope and Traffic between the Nucleus and Cytoplasm (неопр.). The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения 9 декабря 2008.
    16. Alberts, Walter Nuclear Pore Complexes Perforate the Nuclear Envelope (неопр.). Molecular Biology of the Cell 4th edition. Garland Science (2002). Дата обращения 9 декабря 2008.
    17. 1 2 3 4 5 6 7 8 9 Cooper, Geoffrey The Endoplasmic Reticulum (неопр.). The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения 9 декабря 2008.
    18. Bertolotti A., Zhang Y., Hendershot L. M., Harding H. P., Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. (англ.) // Nature cell biology. — 2000. — Vol. 2, no. 6. — P. 326—332. — doi:10.1038/35014014. — PMID 10854322. [исправить]
    19. 1 2 3 4 5 6 7 8 9 Alberts, Walter Membrane-bound Ribosomes Define the Rough ER (неопр.). Molecular Biology of the Cell 4th edition. Garland Science (2002). Дата обращения 9 декабря 2008.
    20. Levine T., Loewen C. Inter-organelle membrane contact sites: through a glass, darkly. (англ.) // Current opinion in cell biology. — 2006. — Vol. 18, no. 4. — P. 371—378. — doi:10.1016/j.ceb.2006.06.011. — PMID 16806880. [исправить]
    21. Rothman J. E. The golgi apparatus: two organelles in tandem. (англ.) // Science (New York, N.Y.). — 1981. — Vol. 213, no. 4513. — P. 1212—1219. — PMID 7268428. [исправить]
    22. Alberts, Walter Transport from the ER through the Golgi Apparatus (неопр.). Molecular Biology of the Cell 4th edition. Garland Science (2002). Дата обращения 9 декабря 2008.
    23. Cooper, Geoffrey The Golgi Apparatus (неопр.). The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения 9 декабря 2008.
    24. Lodish, Harvey Section 17.10 Molecular Mechanisms of Vesicular Traffic (неопр.). Molecular Cell Biology. W. H. Freeman and Company (2000). Дата обращения 9 декабря 2008.
    25. 1 2 Alberts, Walter The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity (неопр.). Molecular Biology of the Cell 4th edition. Garland Science (2002). Дата обращения 9 декабря 2008.
    26. Alberts, Walter Plant and Fungal Vacuoles Are Remarkably Versatile Lysosomes (неопр.). Molecular Biology of the Cell 4th edition. Garland Science (2002). Дата обращения 9 декабря 2008.
    27. Lodish, Harvey Plant Vacuoles Store Small Molecules and Enable the Cell to Elongate Rapidly (неопр.). Molecular Cell Biology. W. H. Freeman and Company (2000). Дата обращения 9 декабря 2008.
    28. Cooper, Geoffrey Endocytosis (неопр.). The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения 9 декабря 2008.
    29. Alberts, Walter Transport from the Trans Golgi Network to Lysosomes (неопр.). Molecular Biology of the Cell 4th edition. Garland Science (2002). Дата обращения 9 декабря 2008.
    30. Cooper, Geoffrey Lysosomes (неопр.). The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения 9 декабря 2008.
    31. 1 2 Cooper, Geoffrey Structure of the Plasma Membrane (неопр.). The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения 9 декабря 2008.
    32. Lodish, Harvey Section 5.3. Biomembranes: Structural Organization and Basic Functions (неопр.). Molecular Cell Biology. W. H. Freeman and Company (2000). Дата обращения 9 декабря 2008.
    33. Martin W. F., Garg S., Zimorski V. Endosymbiotic theories for eukaryote origin. (англ.) // Philosophical transactions of the Royal Society of London. Series B, Biological sciences. — 2015. — Vol. 370, no. 1678. — P. 20140330. — doi:10.1098/rstb.2014.0330. — PMID 26323761. [исправить]
    34. Gould S. B., Garg S. G., Martin W. F. Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System. (англ.) // Trends in microbiology. — 2016. — Vol. 24, no. 7. — P. 525—534. — doi:10.1016/j.tim.2016.03.005. — PMID 27040918. [исправить]
    35. Murley A., Nunnari J. The Emerging Network of Mitochondria-Organelle Contacts. (англ.) // Molecular cell. — 2016. — Vol. 61, no. 5. — P. 648—653. — doi:10.1016/j.molcel.2016.01.031. — PMID 26942669. [исправить]

    ru.wikipedia.org

    Биология для студентов - 05. Структура, химический состав и функции мембран в растительной клетке

    Клеточная мембрана (также цитолемма, плазмалемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.

    Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

    Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Биологическая мембрана включает и различные белки:

    • интегральные (пронизывающие мембрану насквозь),
    • полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой),
    • поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны).

    Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой снаружи.

    Функции мембран:

    • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой.
    • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.
    • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
    • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки.
    • Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.

    Мембраны состоят из липидов трёх классов:

    • фосфолипиды,
    • гликолипиды,
    • холестерол.

    Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой».

    Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим— более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку.

    Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Рядом с белками находятся аннулярные липиды — они более упорядочены, менее подвижны, имеют в составе более насыщенные жирные кислоты и выделяются из мембраны вместе с белком. Без аннулярных липидов белки мембраны не работают.

    Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, в наружном содержатся преимущественно фосфатидилинозитол, фосфатидилхолин, сфингомиелины и гликолипиды, во внутреннем — фосфатидилсерин, фосфатидилэтаноламин и фосфатидилинозитол. Переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён, но может происходить спонтанно, примерно раз в 6 месяцев или с помощью белков-флиппаз и скрамблазыплазматической мембраны. Если в наружном слое появляется фосфатидилсерин, это является сигналом для макрофагов о необходимости уничтожения клетки.

    Мембранные органеллы – это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

    Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.

    Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

    vseobiology.ru

    Мембраны: их строение и функционирование

    Мембраны – это чрезвычайно вязкие и вместе с тем пластичные структуры, окружающие все живые клетки. Функцииклеточных мембран:

    1.Плазматическая мембрана является барьером, с помощью которого поддерживается различный состав вне- и внутриклеточной среды.

    2.Мембраны формируют специализированные компартменты внутри клетки, т.е. многочисленные органеллы – митохондрии, лизосомы, комплекс Гольджи, эндоплазматический ретикулум, ядерные мембраны.

    3.В мембранах локализованы ферменты, участвующие в преобразовании энергии в таких процессах, как окислительное фосфорилирование и фотосинтез.

    Строение и состав мембран

    Основу мембраны составляет двойной липидный слой, в формировании которого участвуют фосфолипиды и гликолипиды. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофильные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы “растворены” в липидном бислое.

    Структура липидов мембран

    Мембранные липиды − амфифильные молекулы, т.к. в молекуле есть как гидрофильный участок (полярные головки), так и гидрофобный участок, представленный углеводородными радикалами жирных кислот, самопроизвольно формирующие бислой. В мембранах присутствуют липиды трех главных типов – фосфолипиды, гликолипиды и холестерол.

    Липидный состав различен. Содержание того или иного липида, по-видимому, определяется разнообразием функций, выполняемых этими липидами в мембранах.

    Фосфолипиды. Все фосфолипиды можно разделить на две группы – глицерофосфолипиды и сфингофосфолипиды. Глицерофосфолипиды относят к производным фосфатидной кислоты. Наиболее распространенные глицерофосфолипиды – фосфатидилхолины и фосфатидилэтаноламины. Сфингофосфолипиды построены на основе аминоспирта сфингозина.

    Гликолипиды. В гликолипидах гидрофобная часть представлена спиртом церамидом, а гидрофильная – углеводным остатком. В зависимости от длины и строения углеводной части различают цереброзиды и ганглиозиды. Полярные “головки” гликолипидов находятся на наружной поверхности плазматических мембран.

    Холестерол (ХС). ХС присутствует во всех мембранах животных клеток. Его молекула состоит из жесткого гидрофобного ядра и гибкой углеводородной цепи. Единственная гидроксильная группа в 3-положении является “полярной головкой”. Для животной клетки среднее молярное отношение ХС/фосфолипиды равно 0,3-0,4, но в плазматической мембране это отношение гораздо выше (0,8-0,9). Наличие ХС в мембранах уменьшает подвижность жирных кислот, снижает латеральную диффузию липидов и поэтому может влиять на функции мембранных белков.

    Свойства мембран:

    1. Избирательная проницаемость. Замкнутый бислой обеспечивает одно из основных свойств мембраны: он непроницаем для большинства водорастворимых молекул, поскольку они не растворяются в его гидрофобной сердцевине. Способностью легко проникать в клетку обладают газы, такие как кислород, СО2и азот вследствие малого размера молекул и слабого взаимодействия с растворителями. Также без труда проникают через бислой молекулы липидной природы, например, стероидные гормоны.

    2.Жидкостность. Для мембран характерна жидкостность (текучесть), способность липидов и белков к перемещениям. Возможны два типа перемещений фосфолипидов – это кувырок (в научной литературе называется “флип-флоп”) и латеральная диффузия. В первом случае противостоящие друг другу в бимолекулярном слое молекулы фосфолипидов переворачиваются (или совершают кувырок) навстречу друг другу и меняются местами в мембране, т.е. наружная становится внутренней и наоборот. Такие перескоки связаны с затратой энергии. Чаще наблюдаются повороты вокруг оси (ротация) и латеральная диффузия – перемещение в пределах слоя параллельно поверхности мембраны. Скорость перемещения молекул зависит от микровязкости мембран, которая, в свою очередь определяется относительным содержанием насыщенных и ненасыщенных жирных кислот в составе липидов. Микровязкость меньше, если в составе липидов преобладают ненасыщенные жирные кислоты, и больше при высоком содержании насыщенных жирных кислот.

    3.Асимметрия мембран. Поверхности одной и той же мембраны различаются по составу липидов, белков и углеводов (поперечная асимметрия). Например, в наружном слое преобладают фосфатидилхолины, а во внутреннем – фосфатидилэтаноламины и фосфатидилсерины. Углеводные компоненты гликопротеинов и гликолипидов выходят на наружную поверхность, образуя сплошное поурытие, называемое гликокаликсом. На внутренней поверхности углеводы отсутствуют. Белки – рецепторы гормонов располагаются на наружной поверхности плазматической мембраны, а регулируемые ими ферменты – аденилатциклаза, фосфолипаза С – на внутренней и т.д.

    Мембранные белки

    Мембранные фосфолипиды играют роль растворителя для мембранных белков, создавая микроокружение, в котором последние могут функционировать. На долю белков приходится от 30 до 70% массы мембран. Число разных белков в мембране варьирует от 6-8 в саркоплазматическом ретикулуме до более чем 100 в плазматической мембране. Это ферменты, транспортные белки, структурные белки, антигены, в том числе антигены основной системы гистосовместимости, рецепторы для различных молекул.

    По локализации в мембране белки подразделяются на интегральные (частично или полностью погруженные в мембрану) и периферические (расположенные на ее поверхности). Некоторые интегральные белки пронизывают мембрану один раз (гликофорин), другие прошивают мембрану многократно. Например, фоторецептор сетчатки глаза и β2-адренорецептор пересекает бислой 7 раз.

    Периферические белки и домены интегральных белков, расположенные на наружной поверхности всех мембран, почти всегда гликозилированы. Олигосахаридные остатки защищают белок от протеолиза, а также участвуют в узнавании лигандов или адгезии.

    studfile.net

    Клеточная мембрана - строение и функции органоида

    Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

    Строение клеточной мембраны

    Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно — перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) — внутрь.

    Строение клеточной мембраны

    Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции — одни из них являются ферментами, другие — транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

    Основные функции клеточной мембраны

    Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) — одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K — выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

    Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.

    Транспорт через клеточную мембрану

    У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом.

    Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

    С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками.

    Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

    У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

    Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

    Функции клеточной мембраны (кратко)

    ФункцияОписание
    Защитный барьерОтделяет внутренние органеллы клетки от внешней среды
    РегулирующаяПроизводит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
    Разграничивающая (компартментализация)Разделение внутреннего пространства клетки на независимые блоки (компартменты)
    Энергетическая- Накопление и трансформация энергии;
    - световые реакции фотосинтеза в хлоропластах;
    - Всасывание и секреция.
    Рецепторная (информационная)Участвует в формировании возбуждения и его проведения.
    ДвигательнаяОсуществляет движение клетки или отдельных ее частей.

    animals-world.ru

    Клеточная мембрана строение и функции

    Функции наружной мембраны клетки

    Характеристики функций кратко перечислены в таблице:

    Функция мембраны
    Описание
    Барьерная рольПлазмолемма выполняет защитную функцию, предохраняя содержимое клетки от воздействия чужеродных агентов. Благодаря особой организации белков, липидов, углеводов, обеспечивается полупроницаемость плазмолеммы.
    Рецепторная функцияЧерез клеточную мембрану происходит активация биологически активных веществ в процессе связывания с рецепторами. Так, иммунные реакции опосредуются через распознавание чужеродных агентов рецепторным аппаратом клеток, локализованным на клеточной мембране.
    Транспортная функцияНаличие пор в плазмолемме позволяет регулировать поступление веществ внутрь клетки. Процесс переноса протекает пассивно (без затрат энергии) для соединений с низкой молекулярной массой. Активный перенос связан с затратами энергии, высвобождающейся при расщеплении аденозинтрифосфота (АТФ). Данный способ имеет место для переноса органических соединений.
    Участие в процессах пищеваренияНа клеточной мембране происходит осаждение веществ (сорбция). Рецепторы связываются субстратом, перемещая его внутрь клетки. Образуется пузырек, свободно лежащий внутри клетки. Сливаясь, такие пузырьки формируют лизосомы с гидролитическими ферментами.
    Ферментативная функцияЭнзимы, необходимые составляющие внутриклеточного пищеварения. Реакции, требующие участия катализаторов, протекают с участием ферментов.

    Предназначение диффузионных мембран

    Основное предназначение супердиффузионных мембран для кровли является обеспечение защиты от проникновения внутренней и наружной влаги внутрь теплоизоляционного слоя. Источниками этой влаги могут быть внутренние испарения и атмосферные осадки. Кроме этого, расположенная в кровельном покрытии диффузионная мембрана обеспечивает эффективные условия отвода уже накопившейся в силу тех или иных причин влаги. Супердиффузионную мембрану можно с полной уверенностью назвать одной из важнейших составляющих теплоизоляционного контура, так как она косвенным образом способствует снижению потерь тепловой энергии. Бережливый хозяин собственного дома, знающий толк в экономии, никогда не будет раздумывать о необходимости или отсутствии таковой при принятии решения о покупке и последующей установке диффузионной мембраны. Тем более, что стоимость этого материала на современном рынке строительных материалом можно с уверенностью назвать чисто символической. 

    Свойства биологических мембран

    1.
    Способность к самосборке
    после
    разрушающих воздействий. Это свойство
    определяется физико-химическими
    особенностями фосфолипидных молекул,
    которые в водном растворе собираются
    вместе так, что гидрофильные концы
    молекул разворачиваются наружу, а
    гидрофобные — внутрь. В уже готовые
    фосфолипидные слои могут встраиваться
    белки

    Способность к самосборке имеет
    важное значение на клеточном уровне

    2. Полупроницаемость
    (избирательность в пропускании ионов
    и молекул). Обеспечивает поддержание
    постоянства ионного и молекулярного
    состава в клетке.

    3. Текучесть
    мембран
    .
    Мембраны не являются жесткими структурами,
    они постоянно флюктуируют за счет
    вращательных и колебательных движений
    молекул липидов и белков. Это обеспечивает
    большую скорость протекания ферментативных
    и других химических процессов в мембранах.

    4. Фрагменты
    мембран не имеют свободных концов
    ,
    так как замыкаются в пузырьки.

    Что такое супердиффузионные мембраны

    Диффузионная мембрана – это специальный материал, имеющий двух-, трех- или даже четырехслойную структуру, основу которого составляет нетканый холст. Диффузионные мембраны применяют для защиты утепляющего слоя от проникновения в его толщу испарений. Также, диффузионные мембраны являются превосходной защитой от воды и ветра. При создании крыши, в полном объеме соответствующей всем современным требованиям, каждый застройщик обязательно столкнется с таким понятием, как «кровельный пирог». Для того чтобы крыша выполняла все возложенные на нее функции в течение всего срока эксплуатации, кроме основного кровельного покрытия, необходимо использовать некоторые дополнительные материалы, к числу которых относятся супердиффузионные мембраны. Супердиффузионные мембраны можно использовать при создании кровельного пирога в любой климатической зоне нашей страны. Роль этого дополнительного слоя чрезвычайно важна, так именно его присутствие позволяет снизить силу неблагоприятных воздействий, вызванных экстремальными погодными условиями, а также нивелировать недочеты и ошибки, возникшие в ходе неправильного монтажа кровли. 

    Строение клеточной мембраны

    Клеточная мембрана содержит углеводы, которые покрывают ее, в виде гликокаликса. Это надмембранная структура, которая выполняет барьерную функцию. Белки, расположенные здесь, находятся в свободном состоянии. Несвязанные протеины участвуют в ферментативных реакциях, обеспечивая внеклеточное расщепление веществ.

    Белки цитоплазматической мембраны представлены гликопротеинами. По химическому составу выделяют протеины, включенные в липидный слой полностью (на всем протяжении), – интегральные белки. Также периферические, не достигающие одной из поверхностей плазмолеммы.

    Первые функционируют как рецепторы, связываясь с нейромедиаторами, гормонами и другими веществами. Вставочные белки необходимы для построения ионных каналов, через которые осуществляется транспорт ионов, гидрофильных субстратов. Вторые являются ферментами, катализирующими внутриклеточные реакции.

    Преимущества использования супердиффузионных мембран

    Хозяин частного дома, решивший использовать в конструкции кровельного пирога супердиффузионные мембраны, в сравнении с домовладельцами, использующими традиционные технологии, получит ряд неоспоримых преимуществ, среди которых основными можно назвать следующие:

    • Использование супердиффузионных мембран позволяет одной пленке заменить две, такие как гидро- и ветрозащита. Наличие мембраны допускает возведение конструкции без наличия вентиляционного зазора.
    • Укладка супердиффузионных мембран разрешается непосредственно на поверхность любого покрытия, что позволяет укладывать теплоизоляцию более толстым слоем, в сравнении с традиционными технологиями. Как результат, владелец дома получает усиленную теплоизоляцию. 
    • Использование супердиффузионных мембран позволяет продлить срок эксплуатации утепляющего материала и деревянных конструкций кровли. При этом, деревянные элементы крыши могут быть установлены без предварительной обработки специальными химическими составами. 
    • Применение супердиффузионных мембран в ходе создания кровельного пирога значительно сокращает время проведения монтажных работ и связанных с ними затрат. 

    Основные свойства плазматической мембраны

    Липидный бислой препятствует проникновению воды. Липиды – гидрофобные соединения, представленные в клетке фосфолипидами. Фосфатная группа обращена наружу и состоит из двух слоев: наружного, направленного во внеклеточную среду, и внутреннего, отграничивающего внутриклеточное содержимое.

    Водорастворимые участки носят название гидрофильных головок. Участки с жирной кислотой направлены внутрь клетки, в виде гидрофобных хвостов. Гидрофобная часть взаимодействует с соседними липидами, что обеспечивает прикрепление их друг к другу. Двойной слой обладает избирательной проницаемостью на разных участках.

    Так, в середине мембрана непроницаема для глюкозы и мочевины, здесь свободно проходят гидрофобные вещества: диоксид углерода, кислород, алкоголь

    Важное значение имеет холестерол, содержание последнего определяет вязкость плазмолеммы

    mr-build.ru


    Смотрите также