Глицерин формула химическая


Глицерин — Википедия

Глицери́н (от греч. γλυκερός — сладкий) — органическое соединение, простейший представитель трёхатомных спиртов с формулой C3H5(OH)3{\displaystyle {\ce {C3H5(OH)3}}}. Представляет собой вязкую прозрачную жидкость со сладким вкусом. Нетоксичен, в отличие например от простейших двухатомных спиртов.

Синонимы: глицерóл, пропантриол-1,2,3.

Бесцветная вязкая жидкость без запаха. Сладкий на вкус, отчего и получил своё название (греч. γλυκερός — сладкий). Имеет молярную массу 92,09 г/моль, относительную плотность d420{\displaystyle d_{4}^{20}} = 1,260, коэффициент преломления nD20{\displaystyle n_{D}^{20}} = 1,4740. Температура плавления составляет 17,9 °C, кипит при 290 °C, частично при этом разлагаясь. Гигроскопичен, поглощает воду из атмосферы в количестве до 40 % от собственной массы. С водой, метанолом, этанолом, ацетоном смешивается в любых пропорциях, но не растворим в эфире и хлороформе, хотя и способен растворяться в их смесях с этанолом[2].

При растворении глицерина в воде выделяется теплота и происходит контракция — уменьшение объёма раствора. Смеси глицерина с водой обладают температурой плавления значительно более низкой, чем каждое из веществ по отдельности, например, при массовом содержании глицерина в 66,7 % его смесь с водой будет замерзать при −46,5 °C[2].

Образует азеотропы с нафталином, его производными и рядом других веществ[2].

Химические свойства глицерина типичны для многоатомных спиртов.

Взаимодействие глицерина с галогеноводородами или галогенидами фосфора ведёт к образованию моно- и дигалогенгидринов.

Глицерин этерифицируется карбоновыми и минеральными кислородосодержащими кислотами с образованием соответствующих сложных эфиров. Так, с азотной кислотой глицерин образует тринитрат — нитроглицерин (получен в 1847 г. Асканио Собреро), использующийся в настоящее время в производстве бездымных порохов.

При дегидратации он образует токсичный акролеин:

HOCh3CH(OH)−Ch3OH⟶h3C=CH−CHO+2h3O{\displaystyle {\ce {HOCh3CH(OH)-Ch3OH -> h3C=CH-CHO + 2h3O}}},

и окисляется до глицеринового альдегида Ch3OHCHOHCHO{\displaystyle {\ce {Ch3OHCHOHCHO}}}, дигидроксиацетона Ch3OHCOCh3OH{\displaystyle {\ce {Ch3OHCOCh3OH}}} или глицериновой кислоты Ch3OHCHOHCOOH{\displaystyle {\ce {Ch3OHCHOHCOOH}}}.

Сложные эфиры глицерина и высших карбоновых кислот — жиры являются важными метаболитами, существенное биологическое значение также имеют фосфолипиды — смешанные глицериды фосфорной и карбоновых кислот.

Глицерин впервые был получен в 1779 году Карлом Вильгельмом Шееле при омылении жиров в присутствии оксидов свинца[3]. Основную массу глицерина получают как побочный продукт при омылении жиров[4].

Большинство синтетических методов получения глицерина основано на использовании пропилена в качестве исходного продукта. Хлорированием пропилена при 450—500 °С получают аллилхлорид, при присоединении к последнему хлорноватистой кислоты образуются хлоргидрины, например, Ch3ClCHOHCh3Cl{\displaystyle {\ce {Ch3ClCHOHCh3Cl}}}, которые при омылении щёлочью превращаются в глицерин.

На превращениях аллилхлорида в глицерин через дихлоргидрин или аллиловый спирт основаны другие методы. Известен также метод получения глицерина окислением пропилена в акролеин; при пропускании смеси паров акролеина и изопропилового спирта через смешанный ZnO{\displaystyle {\ce {ZnO}}} — MgO{\displaystyle {\ce {MgO}}} катализатор образуется аллиловый спирт. Он при 190—270 °C в водном растворе перекиси водорода превращается в глицерин.

Глицерин можно получить также из продуктов гидролиза крахмала, древесной муки, гидрированием образовавшихся моносахаридов или гликолевым брожением сахаров. Также глицерин получается в качестве побочного продукта при производстве биотоплива.

Производные глицерина и их место в обмене веществ живых организмов[править | править код]

Глицериды[править | править код]

Глицерин (3D модель)

Триглицериды являются производными глицерина и образуются при присоединении к нему высших жирных кислот. Триглицериды являются важными компонентами в процессе обмена веществ в живых организмах.

Жиры и масла гидрофобны и нерастворимы в воде, так как гидроксильные группы глицерина заменены малополярными остатками жирных кислот.

Область применения глицерина разнообразна: пищевая промышленность, табачное производство, электронные сигареты, медицинская промышленность, производство моющих и косметических средств, сельское хозяйство, текстильная, бумажная и кожевенная отрасли промышленности, производство пластмасс, лакокрасочная промышленность, электротехника и радиотехника (в качестве флюса при пайке).

Глицерин относится к группе стабилизаторов, обладающих свойствами сохранять и увеличивать степень вязкости и консистенции пищевых продуктов. Зарегистрирован как пищевая добавка Е422, и используется в качестве эмульгатора, при помощи которого смешиваются различные несмешиваемые смеси.

Поскольку глицерин хорошо поддается желированию и горит без запаха и чада, его используют для изготовления высококачественных прозрачных свечей и основы для жидкости, используемой в дым-машинах.

В прошлом глицерин использовался для изготовления динамита[5].

В последние годы глицерин используется, наряду с пропиленгликолем, в качестве основного компонента для приготовления жидкости и картриджей для электронных сигарет.

Используется в криобиологии и крионике как основной компонент популярных проникающих криопротекторов для криоконсервирования анатомических препаратов, биологических тканей и организмов.

ru.wikipedia.org

структурная формула, свойства и области применения :: SYL.ru

Это простейший трехатомный спирт. Химическая формула глицерина — C3H5(OH)3. Представляет собой прозрачную вязкую жидкость. Не имеет запаха, сладкий на вкус. Он не ядовит, поэтому находит широкое применение в быту, пищевой промышленности, косметике и медицине. Структурная формула глицерина представлена на рисунке. Но как добывают его?

Способы получения глицерина

Почти весь глицерин в промышленности получают из жиров. Они с химической точки зрения как раз и представляют собой сложные эфиры глицерина. При омылении этих жиров (получении мыла) глицерин образуется как побочный продукт. Затем он очень просто выделяется из реакционной смеси.

Синтезировать глицерин можно и другими способами. Например, из ацетона. В этом случае его восстанавливают водородом, чтобы получить изопропиловый спирт. На следующей стадии дегидратацией отщепляют молекулу воды, получая пропилен, который затем хлорируют. Полученный дихлорпропан хлорируют еще раз, для получения трихлорпропана. Последняя стадия получения глицерина — гидратация при нагревании. На этой стадии все три молекулы хлора заменяются на гидроксильные группы. Похожим способом сейчас в промышленности получают синтетическое вещество. Только в качестве сырья используют пропилен, который выделяется из побочных газов при перегонке нефти.

Но из пропилена получать глицерин можно и другим способом. Для этого пропилен окисляют в акролеин. Окисление ведется кислородом воздуха в присутствии катализатора (меди) и повышенной температуре. Далее к нему присоединяют перекись водорода, получая двухатомный спирт-альдегид. В качестве катализатора такой реакции используется оксид осмия (VIII). Альдегидную группу в полученном соединении гидрируют, превращая ее в третью гидроксильную. Так и получается глицерин.

Другой вариант синтеза в свое время предложил Е. Е. Вагнер. Окисляя аллиловый спирт перманганатом калия в щелочной среде, можно в одну стадию получить глицерин.

Физические свойства

Глицерин — бесцветная жидкость без запаха со сладковатым вкусом. Обладает гигроскопичностью, то есть стремится поглощать воду. При температуре 20 °C плавится, а при температуре 290 °C кипит с частичным разложением. Смешивается с водой и спиртами в любых соотношениях. Это обусловлено химической формулой. Гидроксильные группы позволяют глицерину образовывать множество водородных связей с молекулами воды. Это и обеспечивает растворение.

Растворим глицерин также в ацетоне и некоторых других органических веществах. Нерастворим в бензоле и эфирах. Он и сам может является таковым для многих органических и неорганических соединений. Плотность его в жидком состоянии составляет 1,26 г/см3. Также стоит отметить, что глицерин — очень вязкая жидкость. Свойство это в 1474 раза больше, чем у воды.

Химические свойства

Исходя из структурной формулы, глицерин содержит в себе три гидроксильные группы. Поэтому для него будут характерны и химические реакции одноатомных спиртов. Причем кислотные свойства глицерина выражены гораздо сильнее, чем у любого другого одноатомного спирта. Так, он может взаимодействовать с металлами, их оксидами или щелочами. Уравнения химических реакций глицерина представлены ниже.

Также он может вступать в реакции дегидратации, образуя множество разных продуктов. Таким образом получают акролеин.

Отдельно стоит сказать про замещение гидроксильной группы на галоген. Это может происходить при взаимодействии глицерина с галогеноводородами. Как видно из структурной формулы глицерина, в результате реакции могут образовываться моно-, ди- и трипроизводные. Более полного замещения можно добиться, если взаимодействие проводить с галогенидами фосфора.

Но глицерин имеет и специфичные свойства, присущие только многоатомным спиртам. Например, он взаимодействует с гидроксидом меди (II), образуя комплексное соединение синего цвета — глицерат меди. Это реакция является качественной для всех многоатомных спиртов.

Характеры для него и реакции этерификации. Это реакция взаимодействия с кислотами, в результате которой получается сложный эфир. Причем этерифицируется глицерин как органическими кислотами, так и минеральными. Например, азотной. Данную реакцию также называют нитрование. В результате нее получается очень полезный, но крайне взрывоопасный продукт — нитроглицерин. Опять же из структурной формулы глицерина видно, что этирифицироваться могут не все гидроксильные группы. Здесь все зависит от условий проведения реакции.

При взаимодействии с водородом при высоком давлении и в присутствии катализторов одна из гидроксильных групп восстанавливается. В результате реакции получается двухатомный спирт — пропиленгликоль.

Глицерин может вступать и в реакции поликонденсации, образуя смесь полиглицеринов. Для этого его очень долго нагревают почти до 300 °C в слабощелочной среде. Химическую формулу глицерина рассмотрели.

Окисление

Очень много у глицерина вариантов окисления. Конечный продукт зависит от природы окислителя, катализаторов и других условий реакции. Так, глицерин можно окислить сильными окислителями, например, дихроматом калия в кислой среде. В результате этой реакции весь глицерин разложится на углекислый газ и воду.

Окисление может происходить и более мягко. Например, при взаимодействии с перекисью водорода получается альдегид или кетон. В качестве катализатора используются соли железа (II).

Окисление можно вести и до получения глицериновой кислоты. В этом случае взаимодействие проводят с концентрированной азотной кислотой. Одна из гидроксильных групп просто окисляется до карбоксильной группы. Из глицерина получают и более экзотические кислоты. При взаимодействии с раствором перманганата калия образуются тартроновая и мезоксалевая кислоты. А при окислении кислородом воздуха с нагреванием в присутствии гидроксида бария получается смесь щавелевой и муравьиной кислоты. Йодной кислотой глицерин можно окислить до муравьиной и формальдегида.

Применение в промышленности

Благодаря своему составу и свойствам, находит глицерин применение в промышленности.

  1. В текстильной промышленности его используют для придания тканям мягкости и эластичности, а также для синтеза красителей и синтетических волокон.
  2. Используют его и в производстве некоторых видов бумаги.
  3. В кожевенной промышленности его растворы применяются для дубления и жировки кожи.
  4. В сельском хозяйстве с помощью глицерина обрабатывают семена для того, чтобы обеспечить им более стабильное прорастание.
  5. В лакокрасочной промышленности глицерин применяется для синтеза полировочных составов и лаков.
  6. При производстве упаковочных материалов, например, целлофана, он используется как пластификатор.
  7. Полимеры на основе глицерина применяются для производства упаковки. Бумага, пропитанная глицерином, приобретает огнестойкие качества.

Применение в пищевой отрасли

Глицерин — это пищевая добавка Е422. Он используется в качестве стабилизатора для сохранения и увеличения вязкости продуктов. Его применяют в производстве хлебобулочных и кондитерских изделий (особенно шоколада) как загуститель и влагоудерживающий агент. Он помогает придавать объем готовым продуктам. Благодаря этой добавке хлеб может дольше оставаться свежим.

Экстракты на основе глицерина зачастую добавляют в напитки. Они позволяют сделать их вкус менее резким. Также его применяют в производстве алкоголя. Добавляют и в табак, чтобы регулировать влажность, устранять раздражающий привкус.

Применение в медицине

Глицерин входит в состав некоторых препаратов, которые используют при лечении кожных болезней. Он имеет антисептические свойства, препятствует заражению ран. Он также способствует понижению внутричерепного и внутриглазного давления, поэтому его применяют при лечении отека мозга.

Из-за того, что глицерин — хороший растворитель, его активно используют в фармакологической промышленности. С помощью этого вещества можно достигнуть очень высокой концентрации действующего компонента. Также он может придавать нужную консистенцию лекарствам. Его часто добавляют в мази и кремы, ведь тот препятствует выпариванию влаги и высыханию.

Применение в косметологии

Глицерин входит в состав многих косметических средств: мыл, шампуней, кремов, увлажняющих масок. При попадании на кожу в небольших количествах он удерживает влагу в верхних слоях кожи. Однако некоторые утверждают, что частое применение средств с глицериновой основой лишает кожу естественной влаги и лишь усугубляет сухость. Также глицерин часто используют как добавку в мыло. Так увеличивается его моющая способность.

Влияние на организм человека

Глицерин хорошо усваивается организмом, так как легко преобразуется в жиры пищеварительной системой. По этой причине он не считается токсичным. Суточное потребление этого вещества никак не ограничено. Но не стоит забывать, что глицерин гигроскопичен, поэтому в организме он приводит к большому выделению волы, то есть имеется риск наступления обезвоживания. По этой причине применение его в пищевых продуктах строго регламентируется. При попадании на кожу он также оказывает осушающий эффект. До сих пор ведутся споры о необходимости применении вещества в косметических средствах.

Итак, в статье рассмотрели состав и свойства глицерина, его применение.

www.syl.ru

Формула глицерина в химии

Химическая формула: HOCH2–CH(OH)–CH2OH

Рациональная формула: C3H5(OH)3

Брутто-формула: C3H8O3

Структурная формула глицерина


Глицерин является простейшим представителем класса многоатомных спиртов – углеводородов, в молекулах которых несколько атомов водорода замещены на гидроксильные группы.

Общая формула трехатомных спиртов, к которым относится глицерин: CnH2n – 1(OH)3

Гидроксильные группы в молекулах многоатомных спиртов всегда связаны с разными атомами углерода, т.е с одним атомом углерода может быть связана только одна гидроксильная группа.

Процентное соотношение элементов в молекуле глицерина: водород – 8,756 %, углерод – 39,125 %, кислород – 52,119 %.

Физические свойства глицерина

При стандартных условиях глицерин – бесцветная или бледно-желтая жидкость, без запаха, сладкая на вкус. Температура плавления 17,8 °С. Температура кипения 290 °С. Плотность 1,2604 г/см. Гигроскопичен, смешивается в водой в любых соотношениях.

Химические свойства глицерина

Химические свойства глицерина во многом аналогичны свойствам одноатомных спиртов. Однако, следует учитывать, что гидроксильная группа – полярная частица, а атом кислород имеет неподеленную электронную пару. Наличие трех гидроксильных групп приводит к усилению поляризации связи О–С. На атомах углерода появляется частичный положительный заряд, который облегчает нуклеофильное замещение ОН-группы.

Поэтому многоатомные спирты в целом проявляют более кислые свойства, чем одноатомные спирты, в частности, взаимодействуют с образованием алкоголятов как с металлами, так и с гидроксидами тяжелых металлов.

Качественная реакция на многоатомные спирты и, соответственно, на глицерин – взаимодействие с гидроксидом меди (II) с образованием ярко-синего глицерата меди (II):

Примеры решения задач по теме «формула глицерина»

ru.solverbook.com

Глицерин ℹ️ физические свойства, плотность, температура замерзания и кипения, вред для организма, для чего используют, получение, чем можно заменить, качественная реакция, структурная химическая формула

Свойства вещества

Глицерин представлен органическим соединением, которое получают из растительных и животных масел. В нем хорошо растворяются различные вещества. Средство не относится к токсичным и ядовитым соединениям. На марки дистиллированного вещества распространяются действия государственного стандарта ГОСТ 6824–96 .

Химическая формула глицерина — C3H8O3. В структурной формуле вещество состоит из цепочки трех атомов углерода, каждый из которых связан с атомом водорода и гидроксильной группы. Сложные эфиры глицерина с длинноцепочными карбоновыми кислотами называются триглицеридами. Они выступают важными производными в метаболизме живых организмов.

Основные физические свойства глицерина:

  • плотность — 1,261 г/см3;
  • молярная масса — 92,1 г/моль;
  • температура кипения (испарения) — 290 °C.

В чистом виде вещество не замерзает, поэтому температура замерзания глицерина определяется в зависимости от его концентрации в растворах. Простейший представитель трехатомных спиртов выглядит как вязкая прозрачная жидкость. Его можно смешивать с водой в разных пропорциях. Глицерин характеризуется сладким вкусом. В сочетании с пропиленгликолем жидкое вещество становится более текучим. Сильно нагретое и зажженное соединение горит синим пламенем.

Химические свойства вещества характерны для многоатомных спиртов. При его взаимодействии с галогеноводородами или галогенидами фосфора образуются моно- и дигалогенгидрины. С азотной кислотой формируется нитроглицерин, который используется в изготовлении бездымных порохов.

При дегидратации образуется токсичный акролеин, после чего окисляется до глицеринового альдегида, дигидроксиацетона или глицериновой кислоты.

Получение глицерина

Впервые вещество было получено в 1779 году путем нагревания масла оливы с оксидом свинца. Этот метод разработал шведский исследователь Карл Шееле. Химик смог доказать, что во все жиры и масла включена сладкая основа.

До начала XIX века технический трехатомный спирт делали именно по способу Шееле. Вскоре его стали широко использовать в промышленной сфере, что заставило увеличить его производство. Француз Мишель Шеврель изучил органическое соединение, выведенное шведским ученым, и дал ему название в 1811 году. Химик открыл первый промышленный метод получения вещества, на который получил патент. При использовании его способа жировые вещества обрабатываются известью или щелочью, чтобы при разложении получились жирные кислоты. Сегодня к этой схеме все еще прибегают во многих странах.

В середине XIX века А. Тилгман открыл еще один промышленный метод создания трехатомного спирта в биохимии. Вещество начали получать путем перемешивания и давления жиров и воды. В течение 12 часов жиры расщепляются на жирные кислоты и глицерин при температуре 180−200 °С. Когда глицериновую воду охлаждают, жирные кислоты всплывают на поверхность. Этот способ часто используют в современной промышленности.

Сделать глицерин можно и мыловарам. Вещество выступает побочным продуктом при изготовлении продукта для ухода за кожей. Он образуется при реакции омыления тристеарата глицерина гидроксидом натрия.

Сферы использования

Не все люди знают, зачем и для чего нужен глицерин. Он используется в различных областях и быту, благодаря своим химическим и физическим свойствам. Глицерин придает мягкость разным видам текстиля, а также регулирует влажность табака. Его часто включают в состав моющих средств и препаратов для обработки сельскохозяйственных культур.

Сферы применения вещества:

  1. Пищевая промышленность. Глицерин используется в качестве подсластителя для создания различных пищевых продуктов и напитков, а также как загуститель в ликерах. А также он прекрасный увлажнитель и растворитель. Органическое соединение входит в состав низкокалорийных продуктов вместо жира. В пищевой промышленности компонент обозначают как Е422. Он может заменить сахар и препятствовать размножению бактерий.
  2. Косметика. Девушки часто интересуются, где взять глицерин растительного и животного происхождения. Компонент включают в качественные средства личной гигиены. Он используется в увлажняющей косметике по уходу за лицом и телом, кремах для бритья и других продуктах. Вещество считается одним из главных составляющих глицеринового мыла, которое предназначено для сухой и чувствительной кожи. Его применяют при раздражениях, зуде кожного покрова и шелушениях.

Поскольку вещество не реагирует с маслами и имеет высокую устойчивость к окислению, оно может применяться в качестве смазочного материала для механических деталей, подвергающихся воздействию бензина. Органическое соединение используют в технической промышленности при обработке алюминия и при изготовлении смол и пластмассы.

Оно применяется в типографии при нанесении красок, для создания кальки, салфеток и пергаментной бумаги.

Область медицины

Глицерин считается безопасным средством для взрослых, не вызывает брожение в организме или размножение болезнетворных бактерий. Вещество хорошо всасывается в тонком кишечнике и не попадает в толстую кишку. Еще оно не обладает канцерогенными свойствами, повреждающими ДНК и вызывающими врожденные эффекты.

Компонент добавляют в аптечные сиропы от кашля и отхаркивающие средства. Он может присутствовать в зубных пастах и жидкостях для полоскания полости рта. В таблетках вещество используется как влагоудерживающий агент. Оно входит в состав слабительных средств. Глицерин принимают в качестве первой помощи при экстренном лечении глазного давления, он быстро его понижает.

Глицерин безопасен для здоровья человека. Иногда его используют для приема внутрь при лечении различных заболеваний.

Полезные действия лекарственного средства:

  • снижает вес;
  • улучшает выносливость при физических нагрузках и помогает организму удерживать влагу;
  • избавляет от диареи и поноса;
  • снижает отек мозга при нейрохирургических операциях;
  • предотвращает обмороки при нарушении кровотока к мозгу.

Глицерин может использоваться и внутривенно в неврологии. Он применяется для понижения внутричерепного давления при инсульте, менингите, синдроме Рейна, энцефалите, менингите, травмах ЦНС. Спортсмены принимают средство, чтобы предотвратить обезвоживание.

Вред для организма и меры безопасности

Если человек использует препараты или косметику, в которых содержится глицерин, ему необходимо предварительно узнать о вреде этого вещества, а также в каких случаях его не следует использовать.

Когда средство применяется в домашних условиях без контроля или назначения специалиста, у человека могут проявляться побочные последствия или обезвоживание организма:

  1. При приеме препаратов внутрь у больных иногда возникают головокружения, тошнота, рвота, вздутие живота, мигрень, жажда или диарея.
  2. Нередко людей мучает сухость во рту, частое мочеиспускание или понос после внутривенного применения средства. Такие симптомы могут привести к обезвоживанию организма, поэтому лечение назначают с большой осторожностью.
  3. Данных о влиянии глицерин на беременных и кормящих женщин при приеме перорально или внутривенно, не имеется. В этом случае стоит отказаться от лечения, чтобы избежать негативных последствий.
  4. Поскольку вещество растительного происхождения обычно получают из кокосового или пальмового масла, в индивидуальных случаях оно вызывает аллергическую реакцию.
  5. Гигроскопичная жидкость в чистом виде оказывает вредное действие и вызывает ожог, если капнуть ее на язык.
  6. Курящие электронные сигареты часто испытывают сухость во рту и першение в горле. В этих устройствах содержится глицерин, который при вдыхании «забирает» влагу, что негативно влияет на состояние легких человека. Не рекомендуется парить аптечный глицерин. Специалисты советуют использовать только пищевой вариант.

Препараты с органическим соединением необходимо применять согласно инструкции на упаковке. Некоторые лекарства с этим веществом следует предварительно встряхивать перед употреблением. Если глицерин применяется для увлажнения и смягчения кожи или при лечении опрелостей, тогда его придется наносить после каждого мытья рук.

Необходимо следить, чтобы средство не попало в глаза, рот и нос. После лучевой терапии для лечения ожогов кожи рекомендуется проконсультироваться с врачом о приеме вещества.

Глицерин незаменим в пищевой и промышленной сфере. Он обладает множеством полезных свойств, которые особенно ценятся в медицине. При правильном применении средств с таким подсластителем получится улучшить здоровье без вреда организму.


nauka.club

свойства и применение :: SYL.ru

Глицерин, также известный как глицерол и 1, 2, 3-пропантриол, представляет собой трехатомный сахарный спирт. Его формула может быть записана как C3H8O3. Это бесцветная, без запаха, вязкая, сладкая на вкус, низкотоксичная жидкость, растворимая в воде. Глицерин встречается в природе в виде сложных эфиров, известных как глицериды. Они являются основными составляющими липидов.

Использование

Глицерин имеет множество применений. Например, он добавляется к фармацевтическим композициям в качестве вещества, обеспечивающего смазку и увлажнение. Является составной частью сиропов от кашля, эликсиров, отхаркивающих препаратов и суппозиториев. Входит в состав зубной пасты, мыла, кремов для бритья, средств для полоскания рта, ухода за кожей и волосами. Глицерин добавляется к различным продуктам в качестве растворителя ароматов, увлажнителя, смягчающего агента и консерванта. Используется в производстве бумаги, упаковочных материалов и нитроглицерина. Также применяется для смягчения пряжи и ткани и т. д.

Какие свойства у глицерина?

Молекула пропантриола-1, 2, 3 представляет собой цепь из 3-х атомов углерода с гидроксильной группой (ОН), присоединенной к каждому из них. Для обозначения этой схемы формулу вещества можно записать в виде HOCH2CH(OH)CH2OH.

Химические свойства глицерина подобны свойствам других многоатомных спиртов. Он реагирует с активными металлами и галогеноводородами. Гидроксильные группы ответственны за то, что вещество хорошо растворяется в воде и гигроскопично, т. е. привлекает молекулы воды из окружающей среды. Оно слабо растворимо в органических растворителях, таких как этилацетат и диэтиловый эфир, и не растворяется в углеводородах.

Некоторые физические свойства глицерина:

  • молярная масса 92,1 г/моль;
  • плотность 1,261 г/см3;
  • температура плавления 18 °C;
  • температура кипения 290 °C;
  • давление пара 0,003 мм рт. ст.

Синтез

До недавнего времени синтетический глицерин производился в промышленных масштабах (главным образом из эпихлоргидрина), но этот процесс больше не является экономично выгодным. Двумя основными методами его получения из натуральных продуктов являются омыление и переэтерификация.

В первом случае щелочь (такая как гидроксид натрия или гидроксид калия) взаимодействует с жиром или маслом, образуя мыло (соль липида) и C3H8O3.

Переэтерификация является процессом, при котором глицерид взаимодействует со спиртом в присутствии кислоты или основания в качестве катализатора. В результате образуется новый сложный эфир и дополнительно высвобождается глицерин. Он является побочным продуктом (10%) производства биодизеля при переэтерификации растительных масел. Это привело к избытку глицерина на рынке. Полученный таким образом продукт, обычно содержащий 20% воды и остаточный катализатор этерификации, можно подвергнуть очистке.

В настоящее время интенсивно проводятся исследования по получению из глицерина более ценных веществ. Одной из таких программ является британская инициатива под названием Glycerol Challenge. Некоторые потенциальные применения глицерина включают его превращение в пропиленгликоль, акролеин, этанол и эпихлоргидрин (сырье для получения эпоксидных смол). Его также можно использовать для производства газообразного водорода и лимонной кислоты.

Участие в метаболизме

Является прекурсором синтеза триацилглицеринов и фосфолипидов в печени и жировой ткани. Когда организм использует накопленный жир в качестве источника энергии, глицерин и жирные кислоты высвобождаются в кровоток. Он может быть превращен в глюкозу печенью и обеспечивает энергию для клеточного метаболизма. В зависимости от физиологических условий глицерин участвует в гликолизе (расщеплении глюкозы и других сахаров) или глюконеогенезе (синтезе глюкозы). Предварительно он превращается в промежуточное соединение, известное как 3-фосфат глицеральдегида.

Фермент глицерин-киназа присутствует только в печени. В жировой ткани 3-фосфат глицерина образуется из дигидроксиацетонфосфата (DHAP) с помощью фермента глицерол-3-фосфатдегидрогеназы.

Применение в медицине и фармацевтике

Свойства глицерина главным образом используются для улучшения эластичности препаратов, увлажнения и смазки. Также он может применяться для снижения внутричерепного и внутриглазного давления.

Действует как слабительное при введении в прямую кишку в форме суппозитория или жидкости (клизмы).

Глицерин используется в сиропах от кашля, эликсирах и отхаркивающих средствах.

В спиртовых настойках экстрактов растений (при концентрации 10%) предотвращает осаждение танинов.

Свойства глицерина позволяют ему заменять спирт в лечебных экстрактах трав, хотя он менее экстрактивный и примерно на 30% хуже усваивается организмом. Производители жидких экстрактов перед добавлением глицерина для получения глицеритов часто готовят отвар в горячей воде.

Личная гигиена

Глицерин служит смягчителем, увлажнителем, растворителем и смазывающим веществом в продуктах личной гигиены.

Он конкурирует с сорбитом и обладает лучшим вкусом и более высокой растворимостью.

Свойства глицерина обуславливают его использование в зубной пасте, средствах для полоскания рта, ухода за кожей и волосами, кремах для бритья и в мыле. В последнем случае сырьем служит денатурированный спирт, глицерин, касторат, кокосат, салатат натрия, сахароза, вода и ароматизаторы. Иногда добавляется лауретсульфат натрия. Глицериновое мыло используется людьми с чувствительной, легко раздражающейся кожей, потому что благодаря увлажняющим свойствам глицерина устраняется ее сухость. Такое мыло можно сделать в домашних условиях.

Когда-то считалось, что гигроскопичные свойства глицерина для кожи будут иметь пагубные последствия. Предполагалось, что так же, как эта жидкость вытягивает влагу из воздуха, она осушит кожу, если ее концентрация слишком высока. Эти страхи являются необоснованными.

Глицерин: свойства и применение в пищевой промышленности

Данное вещество используется в качестве увлажнителя, растворителя, подсластителя и консерванта. Глицерин растворяет ароматизаторы (такие как ваниль) и пищевые красители. Он является увлажняющим и смягчающим агентом в конфетах, тортах и ​​оболочках для мяса и сыров.

Используется в производстве моно- и диглицеридов, которые действуют как эмульгаторы. Применяется для получения сложных эфиров полиглицерина, участвующих в изготовлении жиров и маргарина. Используется в качестве наполнителя в пищевых продуктах с низким содержанием жиров (включая печенье). Глицерин применяется как загуститель в ликерах и стабилизатор в мороженом.

Его энергетическая ценность составляет приблизительно 27 калорий на чайную ложку, и он на 60% слаще сахарозы. Хотя глицерин имеет примерно такую ​​же табличную калорийность, как и сахар, он не повышает уровень сахара в крови и не питает бактерии, образующие кариес. Вещество нельзя употреблять в неразбавленном виде, так как в этом случае оно будет выводить воду из тканей, вызывая волдыри во рту и расстройство желудка. В качестве пищевой добавки глицерин также известен как E422.

Полиэфирполиолы

Глицерин служит одним из основных сырьевых материалов для производства полиолов для гибких пенопластов и в меньшей степени жестких пенополиуретанов.

Является инициатором, к которому добавляется оксид пропилена/этиленоксида.

Алкидные смолы (пластмассы) и целлофан

При взаимодействии с двухосновной кислотой (такой как фталевая) глицерин образует класс продуктов, называемых алкидными смолами, которые используются в поверхностных покрытиях и красках. Является смягчителем и пластификатором (например, целлофана), придающим гибкость, мягкость и прочность. Используется в оболочках для мяса, коллагеновых оболочках, применяемых в медицине и в других упаковочных материалах.

Другие применения

  • Процесс получения чистого спирта включает обезвоживание алкоголя с использованием глицерина. C3H8O3 является пластификатором, увлажнителем и смазочным материалом в производстве бумаги.
  • Участвует в получении нитроглицерина, основного ингредиента бездымного пороха и различных боеприпасов. Производство синтетического глицерина являлось приоритетным для национальной обороны в дни, предшествовавшие Второй мировой войне.
  • Глицерин используется для смазки, эмульгирования и размягчения пряжи и ткани.
  • Водный раствор C3H8O3 помогает сохранить листья. Часто используется при приготовлении лишайника для применения в декорациях и диорамах.
  • При добавлении к мыльному раствору увеличивает его способность создавать долговременные мыльные пузыри.
  • Химические свойства и реакции глицерина позволяют его использовать в качестве антифриза или криопротектора в криогенных процессах. Например, при застекловывании клеток крови, спермы, роговицы для хранения в жидком азоте или для сохранения бактерий при температурах ниже нуля.
  • Используется в качестве рабочей жидкости в дымогенераторах и электронных сигаретах.
  • Глицерин противодействует ожогам от фенола.
  • Может использоваться для получения этанола через метаболическое действие E. coli.
  • Глицерин применяется некоторыми спортсменами для повышения выносливости путем противодействия обезвоживанию.
  • Используется для консервации намокших органических объектов (например, кожи и дерева) для их стабилизации перед сублимационной обработкой.
  • C3H8O3 является (прохиральным) строительным блоком в органическом синтезе.
  • Полезные свойства глицерина позволяют применять его в чернилах для настольных принтеров в качестве регулятора вязкости и стабилизатора.

GMT

Detect languageAfrikaansAlbanianArabicArmenianAzerbaijaniBasqueBelarusianBengaliBosnianBulgarianCatalanCebuanoChichewaChinese (Simplified)Chinese (Traditional)CroatianCzechDanishDutchEnglishEsperantoEstonianFilipinoFinnishFrenchGalicianGeorgianGermanGreekGujaratiHaitian CreoleHausaHebrewHindiHmongHungarianIcelandicIgboIndonesianIrishItalianJapaneseJavaneseKannadaKazakhKhmerKoreanLaoLatinLatvianLithuanianMacedonianMalagasyMalayMalayalamMalteseMaoriMarathiMongolianMyanmar (Burmese)NepaliNorwegianPersianPolishPortuguesePunjabiRomanianRussianSerbianSesothoSinhalaSlovakSlovenianSomaliSpanishSundaneseSwahiliSwedishTajikTamilTeluguThaiTurkishUkrainianUrduUzbekVietnameseWelshYiddishYorubaZuluAfrikaansAlbanianArabicArmenianAzerbaijaniBasqueBelarusianBengaliBosnianBulgarianCatalanCebuanoChichewaChinese (Simplified)Chinese (Traditional)CroatianCzechDanishDutchEnglishEsperantoEstonianFilipinoFinnishFrenchGalicianGeorgianGermanGreekGujaratiHaitian CreoleHausaHebrewHindiHmongHungarianIcelandicIgboIndonesianIrishItalianJapaneseJavaneseKannadaKazakhKhmerKoreanLaoLatinLatvianLithuanianMacedonianMalagasyMalayMalayalamMalteseMaoriMarathiMongolianMyanmar (Burmese)NepaliNorwegianPersianPolishPortuguesePunjabiRomanianRussianSerbianSesothoSinhalaSlovakSlovenianSomaliSpanishSundaneseSwahiliSwedishTajikTamilTeluguThaiTurkishUkrainianUrduUzbekVietnameseWelshYiddishYorubaZulu

Text-to-speech function is limited to 200 characters

Options : History : Feedback : DonateClose

www.syl.ru

Глицерин - это... Что такое Глицерин?

Глицери́н (1,2,3-тригидроксипропан; 1,2,3-пропантриол) (гликос — сладкий) химическое соединение с формулой HOCH2CH(OH)-CH2OH или C3H5(OH)3. Простейший представитель трёхатомных спиртов. Представляет собой вязкую прозрачную жидкость.

Физические свойства

Глицерин — бесцветная, вязкая, гигроскопичная жидкость, неограниченно растворимая в воде. Сладкий на вкус, отчего и получил своё название (гликос — сладкий). Хорошо растворяет многие вещества.

Химические свойства

Химические свойства глицерина типичны для многоатомных спиртов.

Взаимодействие глицерина с галогеноводородами или галогенидами фосфора ведёт к образованию моно- и дигалогенгидринов.

Глицерин этерифицируется карбоновыми и минеральными кислотами с образованием соответствующих эфиров. Так, с азотной кислотой глицерин образует тринитрат — нитроглицерин (получен в 1847 г. Асканьо Собреро), использующийся в настоящее время в производстве бездымных порохов.

При дегидратации он образует токсичный акролеин:

HOCH2CH(OH)-CH2OH H2C=CH-CHO + 2 H2O,

и окисляется до глицеринового альдегида СН2ОНСНОНСНО, дигидроксиацетона СН2ОНСОСН2ОН или глицериновой кислоты СН2ОНСНОНСООН.

Эфиры глицерина и высших карбоновых кислот — жиры являются важными метаболитами, важное биологическое значение играют также фосфолипиды — смешанные глицериды фосфорной и карбоновых кислот.

Получение

Глицерин впервые был получен в 1779 году Шееле при омылении жиров в присутствии окислов свинца. Основную массу глицерина получают как побочный продукт при омылении жиров.

Большинство синтетических методов получения глицерина основано на использовании пропилена в качестве исходного продукта. Хлорированием пропилена при 450—500° С получают аллилхлорид, при присоединении к последнему хлорноватистой кислоты образуются хлоргидрины, например, CH2ClCHOHCH2Cl, которые при омылении щёлочью превращаются в глицерин.

На превращениях аллилхлорида в глицерин через дихлоргидрин или аллиловый спирт основаны другие методы. Известен также метод получения глицерина окислением пропилена в акролеин; при пропускании смеси паров акролеина и изопропилового спирта через смешанный ZnO — MgO катализатор образуется аллиловый спирт. Он при 60—70 °C в водном растворе перекиси водорода превращается в глицерин.

Глицерин можно получить также из продуктов гидролиза крахмала, древесной муки, гидрированием образовавшихся моносахаридов или гликолевым брожением сахаров.

Глицерин (3D модель), показаны атомы и электронные пары при атомах кислорода (розовый цвет)

Триглицериды являются производными глицерина и образуются при присоединении к нему высших жирных кислот. Триглицериды являются важными компонентами в процессе обмена веществ в живых организмах.

Жиры и масла гидрофобны и нерастворимы в воде, так как гидроксильные группы глицерина заменены малополярными остатками жирных кислот.

Применение

Область применения глицерина разнообразна: пищевая промышленность, табачное производство, медицинская промышленность, производство моющих и косметических средств, сельское хозяйство, текстильная, бумажная и кожевенная отрасли промышленности, производство пластмасс, лакокрасочная промышленность, электротехника и радиотехника.

Глицерин используется как пищевая добавка Е422 в производстве кондитерских изделий для улучшения консистенции, для предотвращения проседания шоколада, увеличения объёма хлеба.

Технический глицерин используется для заполнения виброустойчивых манометров типа ДМ8008ВУ, заполнения торцевых уплотнений мешалок и др.

Реклама глицеринового зубного крема. 1906

См. также

Примечания

Ссылки

На русском и английском языках:

На русском языке:

На английском языке:

dic.academic.ru

Глицерин: свойства и все характеристики

Характеристики и физические свойства глицерина

Его температуры плавления и кипения равны 18oС и 290oС соответственно. Глицерин гигроскопичен, хорошо смешивается с водой и этанолом. Абсолютно чистый безводный глицерин затвердевает при +18oС, но получить его в твердом виде чрезвычайно сложно. Строение молекулы глицерина представлено на рис. 1.

Рис. 1. Строение молекулы глицерина.

Глицерин широко распространен в живой природе. Он играет важную роль в процессах обмена в организмах животных, входит в состав большинства липидов – жиров и других веществ, содержащихся в животных и растительных тканях и выполняющих в живых организмах важнейшие функции.

Получение глицерина

Старейший способ производства глицерина – гидролиз жиров и масел:

В настоящее время глицерин получают синтетическим путем из пропилена, образующегося при крекинге нефти. При этом используют разные пути превращения пропилена в глицерин. Наиболее перспективный способ – окисление пропилена кислородом воздуха в присутствии катализатора и при высокой температуре (kat = Cu, t0 = 370). Процесс идет в несколько стадий.

Химические свойства глицерина

Глицерин является представителем трехатомных спиртов, для которых, как для гидроксилсодержащих соединений характерны те же реакции, что и для одноатомных спиртов.

Глицерин реагирует с активными металлами (калием, натрием и др.), замещающими водород во всех гидроксильных группах, вступают в реакции с галогеноводородами (HCl, HBr и др.), в реакции дегидратации, образуя различные эфиры.

Глицерин имеет и специфические свойства, отличающие его от одноатомных спиртов: он вступает в реакцию, не только со щелочными металлами, но и с некоторыми основаниями, в том числе нерастворимыми, например с гидроксидом меди (II):

Результатом реакции глицерина с гидроксидом меди (II) является глицерат меди (сложное комплексное соединение ярко-синего цвета). Эта реакция – качественная реакция на многоатомные спирты.

Важнейшей в практическом отношении является реакция нитрования глицерина, в результате которой образуется тринитроглицерин C3H5(ONO2)3:

Применение глицерина

Глицерин является компонентом многих пищевых продуктов, кремов и косметических средств.

Примеры решения задач

ru.solverbook.com

Глицерин — Циклопедия

Удивительные свойства глицерина

Глицерин — трёхатомный спирт.

Химическая формула 2C3H5(OH)3.

Глицерин был открыт в 1783 году шведским химиком К.Шееле, который показал, что фрагменты этого соединения составляют основу всех природных жиров и назвал его «сладкое начало масел», поскольку продукт обладал сладким вкусом.

В 1813 году французским химиком М.Шеврелем было установлено, что под действием воды (катализаторы: кислота или щелочь) происходит расщепление жиров с образованием глицерина и высших карбоновых кислот. Им впервые было дано название «глицерин» одному из продуктов, который образуется в данном процессе («глицерос» — сладкий).

Синтез глицерина впервые был проведен в 1873 году французским химиком и минералогом Ш. Фриделем.

[править] Физические свойства

Чистый глицерин представляет собой прозрачную, бесцветную, очень густую, вязкую, сиропообразную, без запаха, тяжелее воды и неядовитую сладковатую на вкус жидкость.

Глицерин обладает способностью поглощать влагу из воздуха и удерживать ее. На воздухе может впитать до 50 % воды.[1] Поэтому глицериновая капля на руке дает впечатление легкого нагрева.

Удельный вес химически чистого глицерина при 15 °С составляет 1,26469.

Молекулярная масса 92,09 г/моль.

При обычном атмосферном давлении глицерин кипит при 290 °C и частично разлагается; под пониженным давлением его можно перегнать, не разложив.[1] Смешивается с водой в любой пропорции. Температура вспышки глицерина составляет 150 °C, температура самовоспламенения — 362 °C. При нагревании глицерин быстро испаряется, а в обычных условиях глицерин не летуч.

Глицерин обладает способностью растворять различные минеральные соли, из-за чего чистый глицерин добывается главным образом путем перегонки.[1]

От сильного и длительного охлаждения глицерин кристаллизуется; температура плавления кристаллов — 20 °C.

Плотность 1,261 г/см3 при 20 °C. Показатель преломления N D = 1,4735 при 20 °C. диэлектрическая проницаемость ε = 42,5 при 25 °C. дипольный момент молекулы в газовом состоянии μ = 2,56 Дб.[2]

[править] Химические свойства

С водой глицерин смешивается во всех пропорциях, причем объем такого раствора будет немного меньше суммы первоначальных объемов воды и глицерина. Во всех пропорциях смешивается с этанолом. Нерастворим в жирах, масле, бензине, хлороформе.[1]

Наличие гидроксильных групп обусловливает сходство глицерина в одноатомных спиртов, он вступает в те же реакции, но с участием трех гидроксильных групп.

Реакции полного окисления (горения) происходит, как и у других органических веществ, с образованием углекислого газа и воды.

Глицерин вступает в реакцию замещения с металлическим натрием, которая сопровождается выделением водорода.

Реакция с гидроксидами металлов. В отличие от одноатомных спиртов, многоатомные взаимодействуют с гидроксидами щелочных и металлических элементов.

[править] Реакции

Горение:

  • 2C3H5(OH)3 + 7O2 → 6CO2 + 8H2O

Взаимодействие с металлическим натрием:

  • 2C3H5(OH)3+ 6Na → 2C3H5(ONa)3 + 3H2

Взаимодействие с нерастворимыми основаниями:

Глицерин высокой степени чистоты (не менее 98 %) получают путем алкоголиза растительных жиров с применением вакуум-ректификации.

До разработки синтетических методов глицерин получали щелочным омылением жиров. При этом образуется мыло с водным раствором глицерина. Мыло отделяют путем высаливания с помощью хлорида натрия, а глицерин получают путем повторного сгущения и кристаллизации осажденного хлорида натрия. Полученный 80 % глицерин темного цвета очищается перегонкой и обработкой активированным углем.

Существует ферментативный метод получения глицерина.

Другой метод основан на гидролитическом расщеплении углеводов (крахмала, древесной муки и сахара, особенно тростникового), приводит к образованию смеси глицерина с другими гликолями.

Также глицерин образуется при производстве биотоплива.

[править] Применение в промышленности

В промышленности его получают главным образом при гидролитическом расщеплении жиров. Глицерин выпускают трех видов — сырой, дистиллированный и технически чистый. В косметике разрешено применение двух последних. Глицерин гигроскопичен. Благодаря свойству поглощать из воздуха до 40-50 % воды по отношению к его начальной массе, он получил широкое распространение в косметике как вещество, которое быстро отбирает воду из животной и растительной ткани. Он применяется почти во всех косметических препаратах как смягчающее средство и является одним из основных видов сырья для изготовления зубных паст. Он не засыхает, не горчит, замерзает при очень низких температурах и поэтому применяется как вещество, препятствующее высыханию и замерзанию косметических изделий.

Глицерин используется в парфюмерии и фармации как смягчающим средство или основа мазей, добавка к маслу, в пищевой промышленности — в качестве добавки к напиткам. Спиртовой раствор тринитроглицерина оказывает сосудорасширяющее действие и в виде лекарств используется при сердечных заболеваниях. Глицерин, его олигомеры и полимеры предложены в качестве средств, которые сохраняют свежесть пищевых продуктов.

В кожевенном производстве и текстильной промышленности применяется для обработки пряжи и кожи с целью их смягчения и предоставления эластичности. Глицерин применяется в табачной промышленности, при производстве полиуретанов, резины, фанеры, красителей, чернил и паст, зубной пасты, эмульгаторов, фотографических и других материалов.

Применяется как одно из составных веществ в жидкостях для электронных испарителей.

С глицерина добывают взрывчатое вещество тринитроглицерин, который используется для изготовления динамита.

Глицерин в качестве кормовой добавки повышает надои молока.[3]

  1. 1,01,11,21,3 В. М. Полищук. Животные и растительные жиры в качестве сырья для производства биодизеля (обобщение опыта). Научный вестник Национального университета биоресурсов и природопользования Украины. Сборник научных трудов — 2010, Вып. 144.
  2. ↑ Физические константы приведены по изданию: А. Гордон, Р. Форд. Спутник химика. Физико-химические свойства, методики, библиография. Москва: Мир, 1976, с.20-21
  3. ↑ Печатный М. Ф., Яремчук А. С., Мазур И. Развитие комплекса биотехнологий — главный путь развития аграрного сектора Украины // Научные труды Института биоэнергетических культур и сахарной свеклы. Сборник научных трудов. — 2011, № 12

cyclowiki.org

XuMuK.ru - Глицерин

Глицерин (пропантриол-1,2,3). Наиболее важным из трехатомных спиртов является простейший, называемый просто глицерином; он имеет строение СН2ОН—СНОН—СН2ОН. Глицерин был открыт в 1779 г. Шееле; его состав был установлен Пелузом в 1836 г., а для уяснения его строения богатые данные дали работы Бертело (1854) и Вюрца (1855—1857). В свободном состоянии глицерин в небольших количествах содержится в крови животных.

Как уже было указано, природные жиры и масла состоят из сложных эфиров глицерина и высших жирных предельных и непредельных кислот, из которых главнейшими являются пальмитиновая C15H31COOH, стеариновая C17H35COOH и олеиновая C17H33COOH. Омыление жиров производится обычно под действием различных катализаторов (кислот, щелочей, энзимов), причем жиры расщепляются на глицерин и жирные кислоты, например:

Полный синтез глицерина был произведен Фриделем (1873) следующим путем. Восстановлением ацетона был получен изопропиловый спирт СН3—СНОН—СН3, при отнятии воды дающий пропилен СН3—СН=СН2, который, присоединяя хлор, превращается в хлористый пропилен СН3—СНСl—СН2Сl; при действии на него хлора получается трихлорпропан (трихлоргидрин глицерина) СН2Сl—СНСl—СН2Сl, при нагревании с водой дающий глицерин:

Глицерин может быть получен также осторожным окислением аллилового спирта перманганатом в щелочной среде (Е. Е. Вагнер):

Глицерин образуется в небольшом количестве при спиртовом брожении; в особых условиях он может быть получен путем брожения и в промышленном масштабе.

В настоящее время осуществлено промышленное производство синтетического глицерина из непищевого сырья (на основе пропилена, выделяемого из газов нефтепереработки).

Синтез глицерина из пропилена включает следующие стадии:

1. Хлорирование пропилена при 500° С:

2. Омыление хлористого аллила в аллиловый спирт:

3. Присоединение элементов хлорноватистой кислоты:

4. Омыление монохлоргидринов глицерина:

Возможен и другой, более короткий путь — присоединение элементов хлорноватистой кислоты к хлористому аллилу

и последующее омыление дихлоргидринов глицерина:

Третий способ, основанный на окислении пропилена, состоит из следующих стадий:

1. Окисление пропилена в акролеин:

2. Присоединение перекиси водорода к акролеину в присутствии четырехокиси осмия:

3. Гидрирование глицеринового альдегида в глицерин:

Глицерин — сиропообразная бесцветная жидкость сладкого вкуса; смешивается с водой и спиртом, нерастворим в эфире и хлороформе; способен растворять многие органические, а также и неорганические соединения (многие соли, например гипс). Он может быть получен в виде кристаллов, плавящихся при 17° С. Получение глицерина в кристаллическом виде представляет, однако, значительную трудность вследствие его большой склонности к переохлаждению и медленной кристаллизации. Глицерин кипит со слабым разложением при 290° С; относительная плотность d420=1,260.

Химические свойства глицерина определяются наличием в его молекуле трех гидроксильных групп, благодаря чему он может давать три ряда производных, причем моно- и дипроизводные могут существовать в двух структурно-изомерных формах. Монопроизводные глицерина типа СН2Х—СНОН—СН2ОН и дипроизводные СН2Х—СНХ—СН2ОН содержат асимметрический атом углерода, и потому для них возможна оптическая изомерия.

Глицерин дает три ряда металлических производных — глицератов, которые могут получаться даже при действии на глицерин окислов тяжелых металлов, например окиси меди. Это свидетельствует о том, что кислотные свойства у глицерина выражены значительно сильнее, чем у одноатомных спиртов.

Действием галоидоводородных кислот или галоидных соединений фосфора можно получить ряд галоидгидринов глицерина, например монохлоргидрины

дихлоргидрины

и, наконец, трихлорпропан:

При действии иода и фосфора на безводный глицерин получается иодистый аллил, который, вероятно, образуется в результате отщепления иода от непрочного трииодпропана:

Действием иода и фосфора на водный глицерин получается иодистый изопропил. Возможно, что он образуется при неполном восстановлении трииодпропана иодистым водородом:

При недостаточном содержании иодистого водорода в реакционной смеси в качестве побочного продукта получается пропилен СН3—СН=СН2.

Окислением глицерина были получены следующие вещества:

Можно предполагать образование также следующих продуктов:

При действии кислот, хлорангидридов или ангидридов на глицерин могут получиться три ряда сложных эфиров.

Сложные эфиры глицерина с органическими одноосновными кислотами получают названия по входящим в их состав кислотам: эфиры пальмитиновой кислоты называются пальмитинами, стеариновой — стеаринами, олеиновой — олеинами и т. д. Три ряда сложных эфиров обозначают, пользуясь приставками моно-, ди- и три-, например:

При действии на глицерин безводной щавелевой кислоты НООС—СООН можно получить аллиловый спирт. Если безводную щавелевую кислоту нагревать с избытком глицерина до 150° С, то сначала образуется двузамещенный щавелевоглицериновый эфир, который при дальнейшем нагревании распадается на углекислоту и аллиловый спирт:

С водной щавелевой кислотой (Н2С2О4∙2Н2О) образуется однозамещенный кислый эфир щавелевой кислоты, который при нагревании теряет СО2 и переходит в сложный эфир муравьиной кислоты (моноформин глицерина):

Под действием новой порции щавелевой кислоты в результате омыления получается муравьиная кислота, которая при нагревании отгоняется, а глицерин и щавелевая кислота снова вступают в реакцию и т. д. Таким образом с помощью небольшого количества глицерина можно превратить в муравьиную кислоту неограниченное количество щавелевой кислоты.

При действии водоотнимающих средств (KHSO4, H3BO3, безводный MgSO4) из глицерина получается акролеин.

При действии более слабых водоотнимающих средств могут образоваться полиглицериновые алкоголи, например

Из производных глицерина, содержащих окисное кольцо, наибольший интерес представляют соединения типа

Глицидный спирт (глицидол) — бесцветная, слабо пахнущая жидкость, смешивающаяся с водой, спиртом и эфиром; т. кип. 180° С. Подобно окиси этилена, он может быть получен действием едкого кали на монохлоргидрин глицерина. Аналогичное ему хлорпроизводное — эпихлоргидрин может быть получено действием едкого кали на дихлоргидрины, например:

Эпихлоргидрин — нерастворимая в воде жидкость с т. кип. 118° С. В настоящее время он приобрел важное значение как исходный полупродукт для получения эпоксидных смол. Эти полимеры получаются поликонденсацией эпихлоргидрина с ароматическими диоксисоединениями, чаще всего с бис-фенолами.

Глицерин находит значительное практическое применение. В больших количествах он расходуется для изготовления полиэфирных, так называемых алкидных смол, в частности глифталевых, широко применяемых в лакокрасочной промышленности. Он употребляется также для подслащивания ликеров и других напитков, для предохранения материалов от высыхания (на этом основано применение его в текстильной промышленности для аппретуры и шлихтования), как средство смягчения кожи и составная часть различных косметических препаратов. Значительные количества глицерина идут на приготовление нитроглицерина.

Нитроглицерином неправильно называют полный сложный эфир глицерина и азотной кислоты (глицеринтринитрат)

получающийся при осторожном смешении глицерина с охлажденной смесью концентрированных серной и азотной кислот. Нитроглицерин — маслообразная, тяжелая (относительная плотность 1,601 при 15° С) жидкость, нерастворимая в воде, легкорастворимая в спирте, смешивающаяся с эфиром, хлороформом и бензолом. При охлаждении он кристаллизуется (две полиморфные модификации: неустойчивая с т. пл. 2,2° С и устойчивая с т. пл. 12,2°С). Пары нитроглицерина довольно ядовиты.

Нитроглицерин — чрезвычайно взрывчатое вещество. Он взрывает, особенно в твердом состоянии, с исключительной силой, иногда от простого прикосновения. Растворы его не взрывают. Жидкий нитроглицерин вследствие слишком легкой взрываемости не применяется для подрывных работ. Сравнительно безопасна в обращении смесь 75% нитроглицерина с 25% инфузорной земли (трепела), называемая динамитом. Динамит «бризантен», т. е. разложение его носит характер мгновенного взрыва; поэтому динамит не может быть использован для стрельбы из огнестрельного оружия, а применяется лишь для подрывных работ. Так как в твердом состоянии тринитрат глицерина весьма чувствителен к механическим воздействиям, температуру замерзания динамитов понижают, применяя различные добавки, например добавляют к нитроглицерину динитрат гликоля.

Нитроглицерин в смеси с нитратом целлюлозы образует желатинообразную массу («взрывчатый желатин», или «гремучий студень»), которая горит сравнительно медленно и применяется для изготовления бездымных порохов.

www.xumuk.ru

Химическая формула глицерина. Структурная и молекулярная формула

Простейший многоатомный спирт, в котором насчитывается 3 ОН-группы, — глицерин. Формула, общая для соединений этого типа, — Cnh3n – 1(OH)3. Чтобы лучше разобраться в свойствах и применении глицерина и его гомологов, рассмотрим разновидности формул вещества, каждая из которых используется в определенных ситуациях.

Классификация и номенклатура глицеринов

В органической химии спирты — это вещества, производные от углеводородов. Часть атомов водорода в молекулах замещена на одну или несколько оксигрупп. Спирты различаются по количеству ОН-групп (одно-, двух-, многоатомные). Низшие представители класса с числом углеродных атомов от 1 до 12 — жидкие вещества, высшие — твердые тела. Алкантриолы, или глицерины — это трехатомные спирты, содержащие в своем составе три гидроксила, связанных с тремя разными углеродными атомами. Соединения, принадлежащие к этой группе, проявляют амфотерные свойства, обусловленные взаимным влиянием оксигруппы и радикала.

Простейший представитель алкантриолов — пропантриол-1,2,3 (синоним — глицерин). Формула вещества — C3H8O3. Систематическая номенклатура предполагает упоминание названия соответствующего алкана со словом «триол», использование арабских цифр, определяющих положение ОН-группы. Нумерация в молекулах гомологов глицерина ведется от ближайшего к концу цепи гидроксила. Возможные виды изомерии: строение углеродной цепи, положение оксигрупп, оптическая.

Открытие глицерина

Шведский фармацевт К. Шееле в 1779 году при омылении жиров впервые получил новое сиропообразное вещество. Через 33 года француз М. Шеврель назвал сладкую жидкость глицерином.

Химический состав установил Пелуз в 1836 году. Значительный вклад в изучение строения внесли Бертело (1854) и Вюрц (1857), продолжавшие исследовать глицерин. Молекулярная формула и характер радикала позволили отнести глицерин к предельным спиртам.

Потребность в глицерине значительно возросла после 1847 года, когда был открыт сложный эфир азотной кислоты. Шведскому инженеру А. Нобелю в 1875 году удалось получить с помощью глицерина взрывчатку — динамит.

Состав, структура и простейшая формула глицерина

Простейшая запись состава вещества совпадает с истинной, эмпирической и брутто-формулой глицерина — C3H8O3. Углеродная цепь насчитывает 3 атома, каждый из них связан с гидроксигруппой. Химическими символами обозначены входящие в состав вещества атомы: С — углерод, О — кислород, H — водород. Состав глицерина отражают разные формулы (молекулярные, структурные). Широко используются при изучении вещества шаростержневые и полусферические модели. Двумерные и трехмерные структуры, созданные с помощью компьютерного моделирования — это пространственные изображения молекулы глицерина. Они позволяют наглядно представить состав, взаимное размещение и расстояние, угол связи между атомами.

Молекулярная и молярная массы глицерина

По формуле можно найти молекулярную и молярную массы, процентное соотношение элементов в веществе. Для расчетов необходимо воспользоваться значениями атомных масс элементов, указанными в периодической таблице. Эмпирическая формула глицерина: C3H5(OH)3. Путем умножения атомной массы (в а. е. м.) каждого элемента на число атомов с последующим сложением полученных значений найдем молекулярную (Mr) и молярную (М) массы. Для того вида расчетов удобнее использовать брутто-формулу глицерина — C3H8O3.

  • Ar(Н) = 1,00794; количество атомов в молекуле — 8.
  • Ar(С) = 12,0107; атомов — 3.
  • Ar(О) = 15,9994; атомов — 3.
  • Mr (С3Н8О3) = 12,0107 * 3 + 1,00794 * 8 + 15,9994 * 3 = 92,09382 а. е. м.
  • М (С3Н8О3) = 92,09382 г/моль/
  • Процентное соотношение элементов в молекуле вещества: Н — 8,756 %, С — 39,125 %, О — 52,119 %.

Рациональная и структурная формула глицерина

Состав вещества и его молекул отражают рациональная и брутто-формула, но они не дают представления о расположении атомов, которым отличается глицерин. Формула структурная и компьютерная модель лучше подходят для изучения строения молекулы, связей между атомами.

  • Рациональная формула глицерина — C3H5(OH)3 . Из состава молекулы выделены и заключены в круглые скобки функциональные группы ОН. Сразу за закрывающейся скобкой обозначено количество оксигрупп в молекуле.
  • Полуразвернутый вид рациональной формулы — HOCH2CH(OH)CH2OH (глицерин).
  • Формула структурная в графическом виде показывает расположение молекулы. Черточки между атомами символизируют химические связи.
  • Структура Льюиса содержит точки, обозначающие валентные электроны и пары, участвующие в образовании связи.

Некоторые виды изображений молекулы занимают много места, поэтому чаще используют сокращенные формулы, например, НОСН2—СНОН—СН2ОН, а также скелетные структуры:

Состояние атомов в молекуле глицерина

Гидроксил — полярная частица, к тому же кислород обладает неподеленной парой электронов. Наличие трех оксигрупп ведет к дальнейшей поляризации связи О—Н. На атомах углерода появляется частичный заряд «+», облегчающий нуклеофильное замещение гидроксила. Особенности состава и строения, которые отражает структурная формула глицерина, находят подтверждение в свойствах вещества. Для этого соединения характерны многочисленные водородные мостики — слабые дополнительные связи. Глицерин обладает более выраженными свойствами кислоты, в сравнении с этанолом и пропанолом. К числу важнейших производных относится триолеат глицерина. Формула:

  • простейшая — С57Н104О6;
  • полуразвернутая рациональная — (С17Н33СОО)3С3Н5;
  • рациональная с элементами структурной и скелетной —

Внешний вид глицерина

При комнатной температуре пропантриол-1,2,3 — бесцветная или бледно-желтая жидкость, без запаха, сладкая на вкус. Плавится затвердевший при низких температурах глицерин при температуре 17,8 °С. Кипение вещества с последующим испарением начинается при 290 °С. Глицерин немного тяжелее воды, расчет его плотности при 20 °C дает значение 1,2604 г/см3.

Свойства пропантриола-1,2,3

Химическая формула глицерина не дает представления об амфотерном характере соединения. Слабые кислотные и основные свойства веществ связаны с особенностями влияния атомов в молекуле, поляризацией в группе О—Н. В присутствии щелочи глицерин взаимодействует с гидроксидом меди (II), получается окрашенный в синий цвет комплекс (одна из качественных реакций). С кислотами реакция глицерина завершается образованием сложных эфиров. Взаимодействие трехатомного спирта с азотной кислотой в присутствии H2SO4 (конц.) приводит к образованию нитроглицерина.

В домашних условиях из жиров и масел с помощью глицерина, этилового спирта, других ингредиентов получают мыло. Процесс приготовления требует осторожного нагревания массы на водяной бане, творческого отношения к подбору компонентов и форм для готового продукта мыловарения.

Глицерин и его производные используются в эмалях, красках, многих лекарствах, туалетных принадлежностях. Содержится сладкое вещество в самых разных пищевых продуктах, включая хлебобулочные изделия. Международное наименование заменителя сахара и ароматизатора кондитерских изделий — E422. Наряду с другими спиртами, а также эфирами жирных кислот, глицерин рассматривается в качестве потенциальной замены топлива, получаемого из нефти. Экономичные методы использования новых разновидностей биодизеля для заправки автомобилей произведут революцию в мировом транспортном хозяйстве. Значительно улучшится экологическая ситуация, уменьшится зависимость мирового хозяйства от добычи нефти и газа.

fb.ru

Нитроглицерин — Википедия

Нитроглицерин

({{{картинка}}})
({{{картинка3D}}})
Систематическое
наименование
1,2,3-​тринитроксипропан
Сокращения НГЦ
Традиционные названия нитроглицерин
Хим. формула C3H5N3O9
Состояние тяжёлая, маслянистая бесцветная жидкость
Молярная масса 227,0865 ± 0,0061 г/моль
Плотность 1,595 г/см³
Температура
 • плавления 13 °C
 • кипения 160 °C
 • разложения 140 ± 1 °F[1] и 122 ± 1 °F[1]
 • самовоспламенения 270 °C
Давление пара 0,0003 ± 0,0001 мм рт.ст.[1]
Растворимость
 • в воде 0,138 г/100 мл
Рег. номер CAS 55-63-0
PubChem 4510
Рег. номер EINECS 200-240-8
SMILES
InChI
RTECS QX2100000
ChEBI 28787
Номер ООН 0143, 0144, 1204, 3064 и 3319
ChemSpider 4354
Предельная концентрация 2 мг/м3
ЛД50 105 мг/кг (крысы, перорально),
115 мг/кг (мыши, перорально),
1450 мг/кг (морские свинки, перорально),
210 мг/кг (LD100 человек, перорально)
Токсичность высокотоксичен, взрывоопасен, особенно опасны его пары, при втирании в кожу вызывает сильное и продолжительное отравление.
Пиктограммы ECB
NFPA 704
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Нитроглицерин (1,2,3-тринитроксипропан; также глицеринтринитрат, тринитроглицерин, тринитрин, НГЦ) — органическое соединение, сложный эфир глицерина и азотной кислоты.

Исторически сложившееся русское название «нитроглицерин» с точки зрения современной номенклатуры является некорректным, поскольку нитроглицерин является не нитросоединением, а нитроэфиром (эфиром азотной кислоты). В терминах номенклатуры IUPAC имеет наименование 1,2,3-тринитроксипропан. Химическая формула O2NOCH2CH(ONO2)CH2ONO2.

Широко известен благодаря своим взрывчатым и лекарственным свойствам. Впервые синтезирован итальянским химиком Асканио Собреро в 1847 году, первоначально был назван «пироглицерин» (итал. pyroglycerina).

В лаборатории получают этерификацией глицерина смесью концентрированной азотной и серной кислот. Кислоты и глицерин должны быть очищены от примесей. Для обеспечения безопасности процесса и хорошего выхода по глицерину кислотная смесь должна иметь малое содержание воды. Процесс начинают со смешения олеума (или лабораторной 98%-й серной кислоты) и меланжа. Смешение кислот производят при охлаждении для предотвращения термического разложения концентрированной азотной кислоты. Глицерин вносят из капельной воронки при интенсивном перемешивании и постоянном охлаждении колбы льдом (можно с добавлением пищевой соли). Контроль температуры осуществляют ртутным или электронным термометром. Процесс смешения кислот можно выразить в упрощенном виде следующей реакцией[2]:

2h3SO4+HNO3→h3SO4⋅h3O+NO2HSO4{\displaystyle {\mathsf {2H_{2}SO_{4}+HNO_{3}\rightarrow H_{2}SO_{4}\cdot H_{2}O+NO_{2}HSO_{4}}}}

Реакция равновесная с сильным смещением равновесия влево. Серная кислота необходима для связывания воды в прочные сольваты и для протонирования молекул азотной кислоты с целью образования катионов нитрозония NO2+. Положительный заряд делокализован по всем электронным орбиталям катиона, что обеспечивает его устойчивость.

Затем реакционную смесь кислот и глицерина выдерживают непродолжительное время при охлаждении льдом. Жидкость расслаивается на два слоя. Нитроглицерин легче нитрующей смеси и всплывает в виде мутного слоя. Процесс этерификации проводят при температурах в районе 0˚С. При более низких температурах скорость процесса мала, при более высоких температурах процесс становится опасным и резко уменьшается выход продукта. Превышение температуры выше 25 °С грозит взрывом, поэтому синтез должен проводиться при строжайшем температурном контроле. Уравнение этерификации глицерина азотной кислотой в присутствии серной кислоты можно упрощенно записать следующим образом:

Ch3OH-CH(OH)-Ch3OH+3NO2HSO4→Ch3ONO2-CHONO2-Ch3ONO2{\displaystyle {\mathsf {CH_{2}OH{\text{-}}CH(OH){\text{-}}CH_{2}OH+3NO_{2}HSO_{4}\rightarrow CH_{2}ONO_{2}{\text{-}}CHONO_{2}{\text{-}}CH_{2}ONO_{2}}}}

Верхний слой из реакционного стакана (колбы) сразу сливают в большой объём холодной воды при перемешивании. Температура воды должна быть 6—15 °C, объём — не менее, чем в 100—110 раз превосходить объём полученного НГЦ. Кислоты растворяются в воде, а нитроглицерин оседает на дно ёмкости в виде мутных капель бежевого цвета. Воду сливают и заменяют новой порцией холодной воды с добавлением небольшого количества соды (1—3 % по массе). Окончательную промывку производят небольшим количеством содового раствора до нейтральной реакции водной фазы. Для получения максимально чистого нитроглицерина (например, для исследовательских целей) производят последнюю очистку промывкой водой, что позволяет отделить остатки соды и нитрата натрия. Недостатки лабораторного получения НГЦ во многом связаны с необходимостью использования большого объёма промывных вод, что резко снижает выход продукта из-за безвозвратных потерь НГЦ на растворимость в воде, на практике эти потери могут достигать 30—50 % от всего полученного продукта[3]. Большой объём промывных вод, напротив, позволяет максимально быстро и безопасно промыть НГЦ. Недостаточная промывка НГЦ от кислотных примесей и продуктов неполной этерификации приводит к очень низкой устойчивости продукции (пороха, ТРТ, БВВ и пр.) и делает НГЦ крайне опасным.

В промышленности получают непрерывным нитрованием глицерина нитрующей смесью в специальных инжекторах. Полученную смесь сразу разделяют в сепараторах (преимущественно системы Биацци[4]). После промывки нитроглицерин используют в виде водной эмульсии, что упрощает и делает более безопасным его транспортировку между цехами. В связи с возможной опасностью взрыва НГЦ не хранят, а сразу перерабатывают в бездымный порох или взрывчатые вещества.

Большую часть производственных помещений предприятия, производящего НГЦ, занимают цеха по очистке и переработке жидких стоков и других отходов производства. Наиболее перспективные технологии данного направления основаны на замкнутых циклах использования оборотных сред (промывная вода, отработанная кислотная смесь и др.)[3].

Прозрачная вязкая нелетучая жидкость (как масло), склонная к переохлаждению. Смешивается с органическими растворителями, почти нерастворим в воде[5] (0,13 % при 20 °C, 0,2 % при 50 °C, 0,35 % при 80 °C). При нагревании с водой до 80 °C гидролизуется. Быстро разлагается щёлочами.

Очень чувствителен к удару, трению, высоким температурам, резкому нагреву и т. п. Чувствительность к удару для груза 2 кг — 4 см (гремучая ртуть — 2 см, тротил — 100 см). Весьма опасен в обращении. При осторожном поджигании в малых количествах неустойчиво горит синим пламенем. Температура кристаллизации — 13,5 °C (стабильная модификация, лабильная кристаллизуется при 2,8 °C). Кристаллизуется со значительным увеличением чувствительности к трению. При нагревании до 50 °C начинает медленно разлагаться и становится ещё более взрывоопасным. Температура вспышки — около 200 °C. Теплота взрыва — 6,535 МДж/кг. Температура взрыва — 4110 °C. Несмотря на высокую чувствительность, восприимчивость к детонации довольно низка — для полного взрыва необходим капсюль-детонатор № 8. Скорость детонации — 7650 м/с. 8000-8200 м/c — в стальной трубе диаметром 35 мм, инициирован с помощью детонатора № 8. В обычных условиях жидкий НГЦ часто детонирует в низкоскоростном режиме 1100—2000 м/с. Плотность — 1,595 г/см³, в твёрдом виде — 1,735 г/см³. Твёрдый нитроглицерин менее чувствителен к удару, но более — к трению, поэтому очень опасен. Объём продуктов взрыва — 715 л/кг. Фугасность и бризантность сильно зависят от способа инициирования, при использовании слабого детонатора мощность сравнительно невелика. Фугасность в песке — 390 мл, в воде — 590 мл (кристаллического несколько выше), работоспособность (фугасность) в свинцовой бомбе — 550 см³. Применяется как компонент некоторых жидких ВВ, динамитов и главным образом бездымных порохов (для пластификации нитратов целлюлозы). Кроме того, в малых концентрациях применяется в медицине.

Я пью его в мельчайших дозах,
На сахар капаю раствор,
А он способен бросить в воздух
Любую из ближайших гор.

Он, растворенный в желатине
И превращенный в динамит,
В далекой золотой долине,
Взрывая скалы, загремит.

И содрогнулся шнур бикфордов,
Сработал капсюля запал,
И он разламывает твердый,
Несокрушимый минерал.

Сердечной боли он – причина,
И он один лекарство мне –
Так разъяснила медицина
В холодной горной стороне.

В фармакологии[править | править код]

Нитроглицерин относится к категории веществ, называемых вазодилататорами — средствам, понижающим кровяное давление, расслабляет гладкую мускулатуру кровеносных сосудов, бронхов, желчных и мочевых путей, желудочно-кишечного тракта. Основное применение имеет при стенокардии, главным образом для купирования острых приступов спазмов коронарных сосудов. Для предупреждения приступов он мало пригоден из-за кратковременности действия. Иногда применяется при эмболии центральной артерии сетчатки, а также функциональных холецистопатиях.

Применяется в виде таблеток по 0,5 мг для помещения под язык; а также в 1%-м спиртовом растворе.

Нитроглицерин в небольших дозах входит в состав геля Zanifil, используемого в презервативах Durex CSD500 для стимуляции эрекции во время полового акта[7][8].

Во взрывотехнике[править | править код]

Нитроглицерин широко применялся во взрывотехнике. В чистом виде он очень неустойчив и опасен. После открытия Собреро нитроглицерина, в 1853 году русский химик Зинин предложил использовать его в технических целях. Спустя 10 лет инженер Петрушевский первым начал производить его в больших количествах, под его руководством нитроглицерин был применён в горном деле в 1867 году. Альфред Нобель в 1863 году изобрёл инжектор-смеситель для производства нитроглицерина и капсюль-детонатор, а в 1867 году — динамит, получаемый смешением нитроглицерина с кизельгуром (диатомитом, инфузорной землёй).

В литературе и кино[править | править код]

  • Герой приключенческого романа «Таинственный остров» (1874) Жюль Верна использует нитроглицерин для подрыва гранитной скалы. Автор подробно описывает процесс получения нитроглицерина из природных веществ, обнаруженных на острове (хотя Жюль Верн намеренно опустил один из важных этапов синтеза). Писатель характеризует это вещество следующим образом[9]:

Действительно, это был нитроглицерин — ужасное вещество, обладающее в десять раз большей взрывчатой силой, чем порох, и причинившее уже так много несчастий. Правда, с тех пор как нитроглицерин научились превращать в динамит, смешивая его с каким-нибудь пористым веществом — например, глиной или сахаром, способным удержать опасную жидкость, им можно пользоваться с меньшим риском. Но в то время, когда колонисты действовали на острове Линкольна, динамит ещё не был известен.

  • Основная часть сюжета фильма «Плата за страх» (1953) заключается в процессе перевозки нитроглицерина на грузовиках.

Возьмите одну часть 98%-й дымящей азотной кислоты и смешайте с тремя частями концентрированной серной кислоты. Делать это надо на ледяной бане. Затем добавляйте глицерин по капле из глазной пипетки. Вы получили нитроглицерин.

  • В сериале «Побег» сезон 2 серия 9 в ботаническом саду находят ящик с ампулами нитроглицерина, который спрятал Майкл Скофилд.
  • В сериале «Остаться в живых» сезон 1 серии 24-25 на корабле «Черная скала» находят динамит (нитроглицерин, стабилизированный пористым веществом)
  • В фильме «Легенда Зорро» (2005) главный злодей демонстрирует нитроглицерин заказчикам, также финальная сцена фильма происходит в поезде, перевозящем нитроглицерин.
  • В многосерийном фильме «Террористка Иванова» Полина Иванова хочет отомстить следователю за смерть мужа, взорвав отделение милиции при помощи нитроглицерина.
  • В фильме Серджио Леоне «За пригоршню динамита» один из главных персонажей — ирландский террорист (Джеймс Коберн) обвешан динамитными шашками и бутылями нитроглицерина. В начале фильма он демонстрирует взрывчатые свойства последнего, капая каплю на камень.

Нитроглицерин высокотоксичен. Токсичность нитроглицерина объясняется тем, что он легко и быстро всасывается через кожу и слизистые оболочки (в особенности этому способствует слизистая ротовой полости, дыхательных путей и лёгких) в кровь. Токсичной дозой для человека считается 25—50 мг. Доза в 50—75 мг вызывает сильное отравление: происходит понижение АД, появляется сильная головная боль, головокружение, покраснение лица, сильное жжение в горле и под «ложечкой», возможна одышка, обморок, нередко наблюдается тошнота, рвота, колики, светобоязнь, недолговременные и проходящие расстройства зрения, параличи (особенно глазных мышц), шум в ушах, биение артерий, замедление пульса, синюшность, похолодание конечностей[10]. Хроническое действие нитроглицерина (хроническое отравление организма нитроглицерином наблюдалось у работников, производящих динамит), вдыхание, а также приём внутрь больших доз (100—150 мг/кг) может привести к летальному исходу[10]. LD100 для человека составляет 210 мг/кг, смерть наступает в течение 2 минут. Нитроглицерин также может вызывать сильное раздражение кожи. У работающих с динамитом развиваются упорные язвы под ногтями и на концах пальцев, высыпания на подошвах и между пальцами рук, сухость кожи и трещины. Втирание в кожу 1 капли нитроглицерина вызвало общее отравление, длившееся 10 часов[10]. ПДК для рабочей зоны составляет 2 мг/м3[5].

ru.wikipedia.org


Смотрите также